Warning This Web page has been archived on the Web.

Archived Content

Information identified as archived on the Web is for reference, research or recordkeeping purposes. It has not been altered or updated after the date of archiving. Web pages that are archived on the Web are not subject to the Government of Canada Web Standards. As per the Communications Policy of the Government of Canada, you can request alternate formats on the Contact Us page.

Help the Government of Canada organize its website!

Complete an anonymous 5-minute questionnaire. Start now.

Skip booklet index and go to page content

ARCHIVED - CEPA 1999 Annual Report for April 2009 to March 2010


3 Information Gathering, Objectives, Guidelines and Codes of Practice (Part 3)

Part 3 of CEPA 1999 requires the Minister of the Environment to issue environmental quality objectives and guidelines, substance-release guidelines, and codes of practice. Under this Part, the Minister of Health is required to issue objectives, guidelines and codes of practice with respect to the elements of the environment that may affect the life and health of the people of Canada. Part 3 also provides for research, information gathering, the creation of inventories and reporting.
 

3.1 Environmental Quality Monitoring

In Canada, air and water quality monitoring is carried out through partnerships among provincial, territorial and federal governments, municipalities, universities, air and water associations, environmental groups and volunteers.

3.1.1 National Air Pollution Surveillance Network

The National Air Pollution Surveillance (NAPS) network is a joint federal, provincial, territorial and municipal network established in 1969. It is primarily an urban network, with nearly 300 air monitoring stations located in 177 communities. Almost 840 instruments, including continuous analyzers, particulate matter (PM) monitors, and samplers, are used to provide air quality measurements for criteria air contaminants and toxic substances. These include polycyclic aromatic hydrocarbons (PAHs), dioxins and furans (which are produced through combustion such as wood burning), and heavy metals such as arsenic, lead and mercury. More than 340 types of chemicals are analyzed in samples collected at typical urban NAPS sites, including more than 167 volatile organic compounds that contribute to smog formation. Over the years, the network has produced one of the longest and most geographically diverse air quality databases with the largest number of pollutants.

NAPS data are used to report on progress toward achieving the Canada-wide Standards for Particulate Matter and Ozone. Ozone and fine PM (PM2.5) data are used by the CESI program for its air indicator, while the Canada–U.S. Agreement on Air Quality uses data for discussions relating to transboundary pollution. Sulphur dioxide, nitrogen dioxide, ozone, fine PM and carbon monoxide measurements through the NAPS network are also used by Alberta, Ontario and Quebec to report on their Air Quality Indexes, and by Environment Canada and the remaining provinces to report on the Air Quality Health Index. A large number of requests for NAPS data are received each year by Environment Canada from other governments, academic researchers and Canadians.

In 2009-2010, the NAPS program continued efforts to upgrade data reporting and database infrastructure in order to enable timely reporting of historical results and improve the quality of real-time results.

The analysis of PM was expanded to include levoglucosan, an indicator of biomass combustion, i.e., airborne particles resulting from the burning of wood from forest fires, wood stoves, wood-fired ovens, etc. In addition, focus was placed on replacing standard carbon monoxide instruments with trace-level instruments, and continuous sampling of fine PM was upgraded across the country to the Federal Equivalent Method in an effort to enhance consistency and comparability of fine PM data.

Although concentrations of major pollutants have decreased in the last 40 years, ongoing measurements and research on health effects have made it apparent that pollutants, such as fine PM and ozone, are still of concern. New chemicals are also identified for regulation based on health or environmental risks. As these new priorities are identified, the NAPS network implements methods and procedures to collect data on these chemicals. This process results in a continuously evolving measurement program to track relevant critical air pollutants. Environment Canada is also developing and implementing analytical methods to address the atmospheric science knowledge gaps linked to the changing characteristics of the volatile and semi-volatile chemicals emitted from new vehicle engines that are fitted with novel emission control technologies and that use a wide array of conventional and renewable fuels.

3.1.2 Canadian Air and Precipitation Monitoring Network

The Canadian Air and Precipitation Monitoring Network (CAPMoN) is a regional/remote monitoring network that has been measuring air quality since 1978. CAPMoN 's 33 measurement sites are located in rural and remote areas across the country, to provide a representative sampling of regional air quality. One site in the United States and another in Canada ensure the comparability of measurement methods between the two countries. The network measures a wide range of air pollutants, including several toxic substances under CEPA 1999 (e.g., particulate sulphate, gaseous ammonia, nitrate, gaseous sulphur dioxide and nitric acid).

In 2009-2010, more than 25 000 samples of all types were analyzed in support of Canadian environmental research initiatives. New sites and additional analytical capacity were added to increase the scope of the network in order to support air quality modelling improvements and validation. As a result of this expansion, the impacts of domestic and transboundary air pollutant emissions on air quality, human health and the environment will be better defined.

A new site‑identification process was completed in western Canada and a new monitoring site was implemented in Ontario. In addition, CAPMoN was evaluated to determine its future potential in providing measurement data for emission reductions using scenario modelling results. Furthermore, a study was implemented to determine which existing technologies for measuring fine PM in non-urban environments are suitable for CAPMoN, in order to support air quality forecasting and the Air Quality Health Index.

Other CAPMoN activities include the addition of mercury-in-precipitation measurements to three sites (for a total of eight sites) in collaboration with the U.S.Mercury Deposition Network, and the addition of total gaseous measurement to one site (for a total of four sites) in support of mercury model development and the national mercury measurement and assessment program.

As part of ongoing work, major ion analyses in air and precipitation in support of national critical loads exceedances were completed, and PM measurements in support of Canada-wide Standards and CESI were carried out. Continuous gas measurements in support of various air quality initiatives continued. CAPMoN data continue to be unique, as all continuous gas measurements are not only traceable to primary standards but corrected to those standards in order to support research efforts in regional, continental and hemispherical trends.

3.1.3 Integrated Atmospheric Deposition Network

Mandated by Annex 15 of the Great Lakes Water Quality Agreement, the Integrated Atmospheric Deposition Network is a binational venture involving Environment Canada and the U.S. EPA that was established in 1990 to monitor trends and deposition of priority toxic pollutants in the Great Lakes Basin.

The network maintains a monitoring station on the shoreline of each of the five Great Lakes, along with several additional satellite stations. The monitoring stations provide long-term data on regionally representative concentrations of toxic substances in gas, particle and precipitation samples. Environment Canada operates stations on Lake Huron at Burnt Island and on Lake Ontario at Point Petre. Substances monitored included PAHs, current-use and banned organochlorine pesticides, congener-specific PCBs, polybrominated diphenyl ethers (PBDEs), and trace metals.

In 2009-2010, emphasis was placed on continuing measurements of priority toxic substances, data analysis, and development and refinement of methods. Multi‑year samples from 2005 to 2008 from Canadian stations have been analyzed for PBDEs, and data have been released for use. In addition, screening of samples for new flame-retardant compounds is ongoing, and data series for these new chemicals and many others are being established, which will allow their impact to be evaluated and regulatory actions tracked. For the core Integrated Atmospheric Deposition Network substances, data for air and precipitation are available up to 2005 and 2008, respectively, for the Canadian sites. In 2009-2010, data from the network were used to produce peer-reviewed publications and were included in the Great Lakes Binational Toxics Strategy 2008–2009 Biennial Progress Report.

3.1.4 Northern Contaminants Program

Environment Canada continued atmospheric measurements of persistent organic pollutants (POPs) and other priority chemicals in the Arctic through the Northern Contaminants Air Monitoring: Organic Pollutant Measurements project, under the Northern Contaminants Program. Led by Indian and Northern Affairs Canada, the Northern Contaminants Program is Canada's National Implementation Plan for the Arctic Monitoring and Assessment Programme and contributes to Canada's obligations under the United Nations Environment Programme's Stockholm Convention on Persistent Organic Pollutants.

Under the Northern Contaminants Program, the most recent temporal trends and seasonal variations of current-use pesticides and PBDEs measured at Alert, Nunavut, were reported in the Arctic Monitoring and Assessment Programme report Arctic Pollution 2009. This report updated information about contaminant status for ministers of the eight Arctic countries under the Arctic Council.

Findings in the report indicated that PBDEs were still increasing at Alert as of 2005, with concentrations doubling every 3.5 years in the case of decabrominated diphenyl ethers. Furthermore, concentrations of PBDEs measured in Arctic air were compared with those measured in the Great Lakes under the Integrated Atmospheric Deposition Network. Different inter‑annual variations between the Point Petre, Ontario, and Alert, Nunavut, measurement sites indicate that emissions from regions outside of North America could also transport PBDEs to the Arctic. Episodic observations of elevated particle-bound PBDE concentrations in the winter at Alert were likely associated with enhanced inputs through long-range transport during the Arctic-haze period.

In 2009-2010, the Air Measurements of Mercury at Alert and Little Fox Lake project under the Northern Contaminants Program continued to deliver data on atmospheric mercury levels and processes in the Canadian Arctic. The work conducted through this project provides crucial information about key atmospheric transport, transformation and deposition processes of this priority pollutant in the Arctic. Researchers recently published a peer-reviewed article reporting the first observation of a long-term decrease in annual atmospheric mercury concentrations at Alert.

The Northern Contaminants Program Human Health Assessment Report was released in June 2009, along with a corresponding Arctic Monitoring and Assessment Programme Health Assessment Report. These reports summarize the exposure of Arctic populations to selected environmental chemicals, with time and geographic trends.

3.1.5 Intercontinental Atmospheric Transport of Anthropogenic Pollutants to the Arctic

This is one of 44 Canadian-funded projects--and one of five led by Environment Canada's scientists--under the International Polar Year, which is a large, global, interdisciplinary scientific program focused on the Arctic and Antarctic. The project measures POPs and mercury air concentrations simultaneously in potential source regions along the Pacific coasts and in the Canadian, American and Russian Arctic. It will help determine the geographic source of these chemicals, the proportion contributed by each source region, and the climate conditions influencing their transport to the Arctic. The project is an extension of the networks for measurement of atmospheric POPs and mercury under the Northern Contaminants Program and the Arctic Council's Arctic Monitoring and Assessment Programme. It is a collaboration of a team of scientists from six countries--Canada, Russia, the United States, China, Vietnam and Japan.

In Canada, POPs and mercury are measured at stations in Alert, Nunavut, and Little Fox Lake, Yukon. Mercury in the air is also measured at Whistler, British Columbia. In 2009-2010, stations on both sides of the Pacific Ocean reported preliminary air concentration data for POPs and mercury. Most data are undergoing quality assurance / quality control to ensure consistency and reliability. A multinational quality assurance / quality control program for POPs analysis with 21 participating laboratories was completed. A report was generated and a scientific article has been accepted for publication in a peer-reviewed journal. Model calculations indicated that transport of mercury from Asia is important but less effective than that from Russia and North America. POPs may be trapped by clouds and transport northwards in the mid-troposphere. An outreach package featuring contaminant-related science under the Intercontinental Atmospheric Transport of Anthropogenic Pollutants to the Arctic project was developed and then distributed to Yukon communities in the summer of 2009.

3.1.6 Global Atmospheric Passive Sampling Network

The Global Atmospheric Passive Sampling (GAPS) Network is a global program for monitoring chemicals in the environment using simple sampling devices that require no electricity. The network builds on a successful two-year pilot study that was initiated in December 2004 at more than 50 sites located on all seven continents. It is a collaborative effort managed by Environment Canada scientists working with a team of international researchers. The results of the study contribute to Canada's obligations pursuant to the Stockholm Convention on Persistent Organic Pollutants under the United Nations Environment Programme, and the Protocol on Persistent Organic Pollutants under the United Nations Economic Commission for Europe.

In 2009-2010, screening efforts were ongoing to identify priority pollutants associated with the Chemicals Management Plan, in archived samples. Samples collected at more than 40 sites globally on a quarterly basis in 2005 were screened for new flame retardants, and provide the first global picture of their atmospheric distribution. In addition, a pilot study was conducted in the summer and fall of 2009 to assess global inputs of Domestic Substances List chemicals to the Canadian environment. This pilot study involved the use of a new passive air‑sampling device (a polyurethane foam disk impregnated with sorbent) at a subset of sites in the GAPS network.

Results for the new sorbent-impregnated disk sampler compared well with those from co-deployed traditional disk samplers for PCBs. Furthermore, the sorbent-impregnated disk samplers were capable of capturing perfluoroalkyl compounds and siloxanes, and provide the first picture of the global atmospheric distribution of these compounds. Therefore, the new disk sampler shows promise as a tool for investigating priority contaminants in air. The GAPS network continues to contribute to international efforts on atmospheric POPs through capacity building, technology transfer, participation in workshops, and reporting. Data from the network, which was the only available data for some regions, contributed to the first global monitoring report of the Stockholm Convention on Persistent Organic Pollutants, adopted in May 2009. Quarterly sampling at 55 global sites continued in 2009-2010 for the fifth sampling year for this network.

3.1.7 Greenhouse Gas Monitoring

Environment Canada initiated CO2 observations in 1975, as part of the global effort to characterize the changing atmospheric composition and understand climate change. The current monitoring network for GHGs includes observations of CO2, methane, nitrous oxide, and sulphur hexafluoride. There are five sites located in remote regions of Canada providing weekly and hourly concentration information for all of these chemicals. Between 2007 and 2009, an additional five sites were added in western Canada and central Quebec to monitor CO2 and methane.

The Canadian data are collected and reported in fulfillment of international obligations to the World Meteorological Organization Global Atmosphere Watch and the Global Climate Observing System. They also meet requirements for monitoring and data sharing under the United Nations Framework Convention on Climate Change. Environment Canada's Dr. Neil Trivett Global Atmosphere Watch Observatory, located at Alert, Nunavut, is one of three global inter-comparison sites used to ensure data comparability and accuracy across the global networks. Data are used to estimate emissions from natural and anthropogenic (human-induced) sources, characterize annual variability in sources and sinks, and improve understanding of the exchange of carbon between the atmosphere and the terrestrial biosphere.

Canadian GHG concentrations and trends are consistent with global patterns. Atmospheric observations in 2008 from Environment Canada's weekly integrated flask network at remote sites were 387.3 parts per million for CO2 and 1866 parts per billion for methane.

3.1.8 Water Quality Monitoring in Support of the Clean Air Regulatory Agenda

The Freshwater Inventory and Surveillance of Mercury (FISHg) Network is a monitoring component of the national Clean Air Regulatory Agenda (CARA). The FISHg Network, established in 2008, supports the Mercury Science Program of CARA by providing critical data on mercury contamination and trends in aquatic systems, for national ecological risk mapping.

In 2009-2010, mercury concentrations in fish and water were measured at 14 lakes across Canada located in proximity to point-source mercury emissions, as well as at reference lakes. Preliminary results of this program were presented to the scientific community at the 2010 CARA Mercury Workshop held in Downsview, Ontario. The information generated from the FISHg Network will establish a national baseline of ambient levels of mercury exposure, and trends in mercury in predatory and forage fish in the Canadian aquatic environment for national reporting. This baseline information is fundamental for evaluating risk and the efficacy of the regulatory efforts under CARA.

3.1.9 Water Quality Monitoring in Support of the Chemicals Management Plan

To evaluate the presence and level of substances identified under the Chemicals Management Plan as being a concern in water, 35 additional sampling stations were added across Canada to the network of stations used by Environment Canada's Water Quality Monitoring programs. Water samples from these stations are collected on a monthly basis.

A surveillance study was initiated to investigate the mono, di, tri and tetrachloro derivatives of bisphenol A (BPA) in selected water and fish samples in Canada. Initial results show that these chlorinated analytes of BPA are seldom detected in the ambient environment.

In 2009-2010, BPA was detected in 57% of the freshwater samples collected from 35 locations across Canada. The samples containing BPA were mainly from sites associated with urban activities. The maximum concentration measured in water was 3650 nanograms per litre (ng/L) in Hamilton Harbour, downstream of Hamilton's sewage treatment plant. BPA levels in rivers in Canada were in the range of 5–620 ng/L. Overall, BPA levels were higher in water samples from sites that were influenced by wastewater treatment plants and/or urbanization. No seasonal pattern was observed for BPA levels in the sampling locations studied.

Monitoring of perfluorinated chemicals in the aquatic environment focused on the spatial distribution of contamination and levels of exposures. Results from Canadian rivers and streams show that perfluorooctanesulfonic acid and perfluorooctanoic acid were the major perfluorinated compounds present, and that highest concentrations were found in tributaries and streams near urbanized areas.

Monitoring was completed on the long-term temporal and spatial trends of priority toxic chemicals (e.g., perfluoroalkyl compounds and brominated flame retardants) and regulated legacy compounds (e.g., DDT and PCBs ) in samples from bioindicator fish species (e.g., trout, walleye) collected from sites across Canada. The project generated information on the presence, status and trends of these compounds in fish and their food webs. For Great Lakes trout and their aquatic food web, the results show that PFCs and brominated flame retardants are currently in a state of change, with some substances increasing and others decreasing. For example, decreases in PBDE levels have coincided with regulatory action taken in Canada and other jurisdictions.

An International Quality Assurance Study was initiated on volatile methyl siloxanes in fish, to benchmark laboratory procedures and determine appropriate detection limits for the implementation of monitoring methods for continued studies on the status and trends of these compounds in aquatic biota.

3.1.10 Water Quality Monitoring for Pesticides and Pharmaceuticals and Personal Care Products

Water quality monitoring and surveillance on the presence and fate of pesticides in the aquatic environment is conducted under the National Pesticides Science Program. The program implements Environment Canada's commitments stemming from the Pest Management Regulatory Agency–led initiative “Building Public Confidence in Pesticide Regulation,” which was associated with the December 2002 passing of the revised Pest Control Products Act. The overall objectives of the National Pesticides Science Program are to deliver pesticide surveillance, monitoring, research and assessment activities, and enhance science-based decision making regarding pesticides. 

Monitoring and surveillance studies on pesticides in 2009-2010 included a national surveillance study of carbamate insecticides and fungicides, and sulfonylurea herbicides at selected agricultural sites. Samples were collected from spring through to late summer. Timing and frequency of sampling varied by region, depending on, for example, past sampling regimes, timing and frequency of pesticide application, and timing and frequency of rainfall.

Over the past 10 years, there has been growing concern about the release of pharmaceutical and personal care products into the environment and their potential impact on aquatic organisms. Several Canadian studies have revealed the presence of pharmaceutical and personal care products in aquatic environments such as the Detroit River, Niagara River, the Great Lakes and the St. Lawrence River. As a result, since 2006 approximately 30 pharmaceutical and personal care products (including analgesics, anti-inflammatories, antibiotics and caffeine) have been measured monthly in the waters of the St. Lawrence River. Initial analyses at the six sampling stations located between Carillon and Québec detected the presence of 17 pharmaceutical and personal care products and other substances at stations located downstream from Montréal, specifically at Lavaltrie, Trois-Rivières, Bécancour and Québec. In 2009-2010, the Lavaltrie and Québec stations were chosen for a monthly follow-up.

3.1.11 Great Lakes Surveillance Program

As mandated by Annex 11 of the Great Lakes Water Quality Agreement, surveillance and monitoring is undertaken in the Great Lakes to evaluate water quality trends, in order to provide information for measuring local and whole-lake responses to control measures, and in order to assess the effectiveness of management decisions. Activities are also undertaken to determine the presence of new environmental problems in the Great Lakes Basin.

The Great Lakes Surveillance Program maintains water quality monitoring stations within each of the four Canadian Great Lakes, along with several additional stations within basin watersheds. The monitoring stations provide long-term data on regionally representative concentrations of toxic substances in water samples. Substances monitored include PAHs, current-use and banned organochlorine pesticides, congener-specific PCBs, mercury, and trace elements.

In 2009-2010, emphasis was placed on continued measurements of priority toxic substances and continued data analysis. New information on the levels of total mercury in the Great Lakes and Niagara River waters was reported, the spatial trends were described, and, to a more limited extent, the temporal trends were examined. Information about levels in suspended sediment in the Niagara River was used to provide a longer-term temporal trend. Comparisons were also made between the levels of total mercury in Great Lakes waters, in precipitation, in bottom sediments and in suspended sediments in the connecting channels. Data indicate that mercury concentrations have been declining in the Great Lakes.

3.1.12 Water Quality Monitoring of Transboundary Groundwater Contaminants

Since 1992, water quality sampling of groundwater on the Canadian side of the Abbotsford–Sumas aquifer has been conducted by Environment Canada, with a focus on identifying trends in nitrate concentrations in groundwater flowing from Canada to the United States (British Columbia to Washington State). Environment Canada's monitoring of transboundary nitrate contamination in this aquifer has been ongoing since 1992. Samples are routinely collected using a network of monitoring wells, and analyzed for a range of inorganic water quality parameters, including dissolved nutrients and dissolved metals. The groundwater monitoring network in this aquifer has also been used for research on the persistence and fate of pesticides and pharmaceuticals in groundwater settings. Nitrate concentrations on the Canadian side of the aquifer continue to be elevated and are, on average, 1.5 times higher than the maximum acceptable concentration for nitrate under the Guidelines for Canadian Drinking Water Quality, with localized areas of the aquifer showing concentrations as high as six times the maximum acceptable concentration. Environment Canada is currently engaged in collaborative research with Agriculture and Agri-Food Canada to improve the understanding of nitrate leaching dynamics from farm fields over the aquifer and the influence of different nutrient management practices on groundwater quality.

3.2 Research

Environment Canada and Health Canada scientists published hundreds of articles, reports and papers during this reporting period. The following examples illustrate the types and range of research undertaken in 2009-2010.

3.2.1 Air

3.2.1.1 Air Quality Research in Support of the Clean Air Regulatory Agenda

Air quality research in support of CARA provides coordinated, timely, credible and relevant information to Canadians and decision makers about the health risks and environmental impacts of current and future levels of air pollutants, through research, monitoring, modelling and scientific assessment.

The program primarily focuses on the pollutants responsible for smog, acid deposition and mercury pollution (e.g., sulphur dioxide, nitrogen oxides, volatile organic compounds, PM, ozone and mercury).

Information derived from this program also enables Canada to track the effectiveness of measures to improve air quality, such as those implemented under CEPA 1999, the Canada-wide Standards for PM, ozone and mercury, the Canada–United States Air Quality Agreement, and the United Nations Economic Commission for Europe's Convention on Long-range Transboundary Air Pollution.

Activities under the program in 2009-2010 included the following:

  • A field study characterizing exposure of pollutants to populations in Montréal's urban area was completed as part of work to determine baseline values under CARA. Preliminary results were to be presented to Montréal Public Health and local collaborators at a workshop in June 2010, and analysis of the data is ongoing.
  • New methodologies were developed to link PM measurements to their sources and/or to atmospheric processes that lead to PM formation or chemical transformation. This research will help to understand the source–receptor relationships between air pollutant emissions and ambient concentrations of fine PM, which will help refine air quality models used for forecasting and for evaluation of emission control options. Overall, these improved capabilities are expected to help prioritize future regulations geared toward reducing PM concentrations in the atmosphere.
  • The predictive capacity of the air quality model was enhanced in an effort to assess the long-range transport of pollutants on Canadian air quality. As well, work progressed on developing a system to generate air quality scenarios with input from a regional climate model.
  • To determine whether Canada's forests are a net source or sink for aerosol particles, an experiment was conducted with university collaborators to study particles and volatile organic compounds from forests.
  • In support of vehicle, engine, equipment and fuel regulations for air pollutants and GHGs, scientific testing and research continued on renewable fuels, with a focus on biofuels, new propulsion systems for on-road vehicles, emissions characterization for marine vessels, locomotives and aviation, and new propulsion systems. Furthermore, Environment Canada and Health Canada, in collaboration with Natural Resources Canada, carried out studies to assess and characterize emissions from diesel engines using various diesel fuels and engine modes.
  • Environment Canada is the lead contributor to the World Meteorological Organization's Global Assessment of Precipitation Chemistry and Deposition, a collaborative initiative under the Global Atmosphere Watch Programme to inform the global science and policy communities of the status of precipitation chemistry and atmospheric deposition of major compounds, on global and regional scales.
  • Research on precipitation chemistry and deposition was performed in collaboration with the United States to ensure data comparability and consistency. In collaboration with the U.S. EPA, a comparison of Canadian and U.S. dry deposition models was performed to identify discrepancies in dry deposition data between the Canadian and U.S. air monitoring networks (CAPMoN and the Clean Air Status and Trends Network). In addition, a mercury study was initiated in collaboration with Great Lakes scientists from Canada and the United States with the goal of generating a dry deposition map. The study aims to quantify mercury dry deposition over the Great Lakes and surrounding areas as part of the Great Lakes Air Deposition Program.
  • Field measurement programs under the International Polar Year projects OASIS (Ocean–Atmosphere–Sea Ice–Snowpack) and INCATPA (INterContinental Atmospheric Transport of Anthropogenic Pollutants to the Arctic) were completed in 2009-2010, including the deployment of an ice-anchored buoy for measurement of ozone, bromine oxide and CO2. Data quality control and analysis are under way.
3.2.1.2 Air Quality Research in Support of the Chemicals Management Plan

Research studies that were undertaken in support of the Chemicals Management Plan in 2009-2010 included the following:

  • Monitoring of various chemicals continued at Alert, Nunavut. A novel passive sampler designed for use in harsh environments was tested in parallel with traditional techniques.
  • The first year of PBDEs monitoring for the NAPS network was completed. Environment Canada continued to provide leadership, direction and recommendations on new and existing analytical methods suitable for monitoring and surveillance of chemicals targeted under the Chemicals Management Plan. Furthermore, analytical methods were developed to improve the detection of Chemicals Management Plan compounds in environmental media samples, including air samples.
  • Studies were carried out in the waste sector to assess emissions to air of PFCs and siloxanes from wastewater treatment plants and landfills. Passive sampling techniques were employed to map and characterize waste-sector emissions and demonstrate the importance of these sources to the atmosphere. These studies are supporting research aiming to determine whether the atmosphere is the principal medium through which ionic PFCs are subject to long-range transport.
  • The analysis of platinum-group elements from automotive catalytic converters continued. Analytical methods were developed and tested to measure lanthanum and lanthanides in coarse and fine PM. Over 260 PM samples (coarse and fine) collected at four urban and two rural sites within the NAPS network were analyzed. The results obtained showed that for the coarse (PM10-2.5) particulate fraction, the relative concentration pattern of the lanthanides mimics that found in the Earth's crust, whereas for the fine (PM2.5) particulate fraction, the relative concentration pattern is similar to that observed in catalysts used in fluidized-bed catalytic cracking in petroleum refining operations. Therefore, lanthanides in PM2.5 are excellent tracers of specific industrial emission sources.
  • Collaborative research continued with the National Research Council to develop the necessary analytical tools for accurately assessing human exposure to selected trace metals (e.g., silver) in the environment.
  • Research was conducted to determine the effect of chemical aging on volatilization potential and bioavailability of chemicals in soil. The study concluded that chemicals become more strongly bound to the soil as they age, which reduces their potential for volatilization and bioavailability. The outcome will improve on existing regional and global atmospheric transport models, by capturing soil–air exchange processes in these models; and it will further the understanding of environmental fate of chemicals in soil in terms of bioavailability.

3.2.2 Climate Research

Environment Canada climate scientists undertake a range of climate research projects, including climate model development, production of future climate scenarios, water and energy process studies, and GHG studies. Activities under the program in 2009-2010 included the following:

  • The development of a comprehensive Earth System model that represents physical, chemical and biological processes relevant to climate and climate change. This model is used for historical climate simulations and future climate projections. Versions of this model are also used to make climate predictions at seasonal to decadal time scales, and to provide finer detail using the regional climate model version.
  • The investigation of energy, water and carbon exchanges between the atmosphere and terrestrial biosphere, their inter-annual variability, and the impact of disturbances (fire, drought, insect/disease outbreaks) and climate change on Canadian carbon sources and sinks.
  • GHG monitoring and research to improve monitoring methodologies and characterize the impact of anthropogenic sources within the continental and global context.

Information derived from these programs informs policies on GHG emissions. This information is also used to characterize climate change impacts and vulnerabilities within Canada, in order to support decision making on climate adaptation. Research activities are coordinated with international efforts under the World Meteorological Organization and World Climate Research Program, and contribute to the Intergovernmental Panel on Climate Change assessments.

3.2.3 Water

3.2.3.1 Metals

Research was undertaken to determine the impacts of metal mixtures in the Spanish Harbour AOC (Great Lakes), as well as in the Athabasca River and the water and sediment from oil sands tailings ponds. The presence of 35 metals was assessed in water, sediment and invertebrate tissues.

Methods were developed for the analyses of selenium and vanadium in water, tissues and sediment, and analyses were completed in support of field-site and laboratory studies assessing the impact of metal mixtures.

3.2.3.2 Municipal Wastewater Effluents

Research conducted on life-cycle exposures of fish to three municipal wastewater effluents that discharge into Lake Ontario shows that some municipal wastewater effluents can affect fish reproduction. Fathead Minnows (Pimephales promelas) grew normally and appeared healthy at 70% / 30% effluent/water mixture, yet in two of the three effluents they produced fewer eggs than reference fish. The municipal wastewater effluents contained a mixture of compounds: ammonia, oils, metals, nutrients and many pharmaceuticals and personal care products. High concentrations of the pharmaceutical drug furosemide (used to control blood pressure and kidney problems) were detected in all three effluents. Studies will next assess which advanced treatment technologies (ultraviolet sterilization, increased nitrification) can remove these compounds.

Life-cycle tests were conducted on freshwater crustaceans (Hyalella azteca) exposed to municipal wastewater effluents from Windsor, Ontario. Animals exposed to municipal wastewater effluents had lower survival rates but grew up to 1.8 times larger than control animals, which had not been exposed to effluents. Interestingly, animals exposed to the effluents initially produced more juveniles per adult than the control animals, likely because the former were larger and therefore able to reproduce earlier; however, they produced fewer juveniles per adult by the end of the 10-week exposure. Several pharmaceuticals and personal care products were detected in the effluent at levels above 400 ng/L, namely diclofenac, carbamazepine, sulfamethoxazole, trimethroprim and BPA. Further research is needed to determine which compound or mixture of compounds causes the population-level effects (long-term survival, reproduction) observed in this study.

Wascana Creek, Saskatchewan, is a sewage effluent–dominated aquatic ecosystem. Four water surveys conducted on the creek have indicated that pharmaceuticals and personal care products were consistently present, in nanograms per litre and sometimes micrograms per litre concentrations, downstream of the sewage treatment plant. The mixture included antibiotics, analgesics, anti-inflammatories, a lipid regulator, metabolites of caffeine, cocaine and nicotine, and an insect repellent. Not surprisingly, concentrations of some of these compounds were highest in winter, when creek flow was almost 100% treated sewage effluent. The levels of ibuprofen, naproxen, gemfibrozil, triclosan, erythromycin, trimethoprim and sulfamethoxazole and unionized ammonia in Wascana Creek far exceed Canadian and American water quality guidelines.

The effect of municipal effluents on the health of freshwater mussels in the Grand River, Ontario, was investigated. Mussels collected downstream of Kitchener-Waterloo had reduced hemocyte (blood cell) viability. The phagocytosis activity (immune response) of the hemocytes was elevated in these mussels, which are exposed to multiple municipal effluents, suggesting a stimulation of immune function. These results suggest that chronic exposure to municipal effluents impacts the immune health of native mussels. The relationship between immune health and the mussels' overall health is being investigated.

Results from studies on myxozoan fish parasites (microscopic organisms that infect different fish tissues) have shown an increase in species richness and prevalence of these parasites downstream of the municipal effluents from Montréal. The high organic load stemming from the sewage effluent promotes populations of benthic worms called oligochaetes, which transmit the parasites to fish.

Studies measuring the combined effects of parasites and pollution (including that from the Montréal municipal effluents) on Yellow Perch (Perca flavescens) in the St. Lawrence River demonstrated that fish exposed both to contaminants and to high levels of parasites are under more stress than fish exposed to either stressor alone. Thus, some parasites become more pathogenic in polluted ecosystems, whereas they have little or no detectable effect in unpolluted conditions. These results are important to help evaluate the overall effects of contaminants on ecosystem health, and show that the effects of contaminants should not be evaluated in isolation.

Field studies were conducted to assess the growth, reproductive function, and survival of the Rainbow Darter (Etheostoma caeruleum), an indicator fish species, upstream and downstream of a wastewater treatment plant. Fish were collected at two sites upstream and at two sites downstream of the Kitchener, Ontario, wastewater treatment plant. The length and weight of darters did not differ between upstream and downstream sites. However, fish condition (weight relative to length) was highest in fish collected at the site that was further downstream from the treatment plant (far-field site), and condition was lowest at the downstream site that was closer to the treatment plant (near-field site). There were no differences in gonad size in either sex, but male fish at the near-field site had larger livers. Contrary to previous findings, analysis of sex-steroid production capacity in female Rainbow Darters revealed no differences among sites. As well, other reproductive parameters measured in female fish did not differ among the sites. However, male fish from both downstream sites had lower capacity to produce testosterone than fish from the upstream sites. Analysis of males revealed that the intersex condition (eggs in the testes) was present in 60% of the male darters collected at the near-field site and in 75% of the male darters collected at the far-field site.

Greenside Darters (Etheostoma blennioides) and Rainbow Darters were collected in the Speed River at an upstream reference site (Silvercreek), downstream of the tertiary plant in Guelph (sewage treatment plant, near-field site), and further downstream at Niska Road (far-field site). There were no site differences in length and weight in either species or either sex. Female Rainbow Darters collected at the near-field site had a lower condition (weight relative to length) than reference fish, but did not differ from fish from the far-field site. Conversely, male Rainbow Darters from the far-field site had greater condition than fish from the other two sites. Rainbow Darters from the far-field site also had a larger gonadosomatic index (gonad weight relative to body weight) than fish from the sewage treatment plant site. There were no site differences in liver size with respect to body weight in either sex of either species. There were no site differences in steroid production capacity of female darters of either species. Stimulated steroid production capacity was significantly reduced in female Greenside Darters collected at the near-field site relative to levels at the reference site, and levels returned to reference levels in fish collected at the far-field site. There were no significant site differences in steroid production capacity of male darters of either species.  

3.2.3.3 Pesticides

Research continued to examine the use of short-term in situ (caging in the field) exposures using a freshwater crustacean (Hyalella azteca) as a tool to predict long-term effects of current-use pesticides in aquatic ecosystems. Results showed decreased survival and acetylcholinesterase activity (an enzyme that is inhibited by organophosphate and carbamate insecticides) after one-week exposures to streams in the Niagara Region of southern Ontario where organophosphate and carbamate insecticides were detected. Studies are ongoing to identify effects of individual pesticides and pesticide mixtures measured at sites during in situ exposures.

In collaboration with Fisheries and Oceans Canada, work was undertaken on methods that can be used to better define the environmental risk of agricultural pesticides. A chronic sublethal toxicity test (growth) was developed for the Sand Shrimp (Crangon septemspinosa), a species that is endemic to eastern Canada and that may be declining in numbers in certain areas. In testing a total of 11 pesticides for acute lethal toxicity, and seven for chronic toxicity, the Sand Shrimp test has proven to be more sensitive than fish tests for most of the pesticides, with the exception of endosulfan and chlorothalonil, where a few of the fish species tested showed higher sensitivity than the Sand Shrimp. When compared with other crustacean species, Sand Shrimp were usually among the more sensitive crustaceans, and were the most sensitive to chlorpyrifos.

3.2.3.4 Endocrine-disrupting Substances

Randle Reef in Hamilton Harbour is contaminated with PAHs and heavy metals, which impact the health of the harbour's ecosystem. There is a need for tools to track the efficacy and progress of the proposed remediation actions. In this regard, a set of molecular tools was developed to test the hypothesis that changes in gene expression in fish can predict the adverse effects of exposure to contaminated sediment. The research showed that sediment exposure altered the expression of genes in the following categories: cell adhesion, cell morphogenesis, DNA synthesis, immune responses, metabolism, proteolysis, reproduction, cell respiration, response to stimulus, and cell transport. These findings indicate that monitoring gene expression can be a fast, economical tool for assessing efficacy of sediment remediation actions.

Fathead Minnows exposed for one complete life cycle to three Ontario municipal wastewater effluents showed decreases in egg production for two of the effluents. Fish in 70% effluent grew well and appeared normal, but egg production was 40-50% lower than in control fish growing in laboratory water alone. Similar decreases in reproduction were seen with the freshwater crustacean Hyalella azteca exposed to one of these municipal wastewater effluents. Measurements of pharmaceuticals and personal care products in the effluents are continuing, as are measurements of other conventional toxicants (pesticides, oils and hydrocarbons, metals, ammonia, etc.).

Exposure of juvenile Fathead Minnows to pulp mill effluent in New Brunswick showed dramatic effects on egg production after 30 days. Fish exposed to 100% effluent produced no eggs, and fish exposed to 30% effluent produced 50% fewer eggs than control fish. Some decreases in egg production were also evident at 10% effluent. The study is part of an investigation into the cause of the small gonads observed in fish exposed to pulp mill effluents. The endocrine-disrupting effects of this effluent will be investigated further by examining the chemicals present in the effluent. The next goal of the study will be to formulate recommended best practices to industry on effluent treatment, spill control, and goals for chemicals present in effluent based on this and other endpoints.

3.2.3.5 Other Chemicals

Fathead Minnow embryos were exposed to three dye and pigment compounds being addressed by the Chemicals Management Plan. Very few effects were seen in hatched larvae after 14 days with Acid Blue 129. Exposure to Sudan Red G caused decreased survival of fry at concentrations of 100 µg/L and above; however, the effects were delayed and fish mortalities occurred after hatch. These factors are important to consider in the development of fish test procedures. For example, many European countries are proposing toxicity tests that end at hatch of larvae, and therefore tested compounds would be determined non-toxic if the test was terminated too soon. Life-cycle exposure of Fathead Minnows to Disperse Yellow 7 is continuing into 2010-2011. This dye was chosen for long-term studies, and concentrations of 10-30 µg/L caused effects on growth in a 21-day exposure period. Results will be assessed in collaboration with water concentrations of the dyes, and with results from invertebrates exposed to these same compounds.

Toxicity tests were conducted to examine the effects of three dyes used in Canadian commerce on survival and growth of Hyalella azteca, a freshwater crustacean. No effects on survival or growth were observed after four-week exposures to Acid Blue 80 (up to 10 000 µg/L) or Acid Blue 40 (up to 2500 µg/L). Survival was affected after four-week exposures to Disperse Yellow 7, with lethal concentrations ranging from 50-140 µg/L. Life-cycle tests showed that egg and juvenile production in animals exposed to Disperse Yellow 7 were 25-30% of those of control animals after a 10-week exposure to 20-50 µg/L. Results will be assessed in collaboration with measurement of environmental concentrations of these dyes in Canadian wastewaters, to determine whether dye levels in the Canadian environment pose a threat to aquatic biota.

Work also continued on the assessment of medium-priority compounds (anthracenedione dyes and azo dyes). The environmental mobility and thus potential bioavailability of these compounds were investigated in sediment, and it was revealed that both classes of compounds typically displayed irreversible binding to the sediment. As a result, it would be expected that the risk of exposure is greater to sediment-dwelling organisms than to aquatic organisms living in the water column. Further research was conducted into the susceptibility of anthracenedione dyes (specifically Acid Blue 129) to reductive degradation. The compound was found to degrade at room temperature and produced trimethylaniline as a major product. Given that aromatic amines are thought to have potentially genotoxic effects, this finding constitutes a key focus of ongoing research.

Perfluorinated chemicals are a concern in Canada due to their toxicity, persistence and potential for biomagnification. Research on PFCs in the aquatic environment continued, with a focus on the geographic breadth of contamination and levels of exposures. A survey of Canadian rivers and streams for PFCs showed that perfluorooctane sulfonate and perfluorooctanoate were the major PFCs present, and that highest concentrations were found in tributaries of Lake Erie and Lake Ontario and in the St. Lawrence River downstream of Montréal. A related study also revealed for the first time that other PFCs, perfluoroalkyl phosphates and phosphonates (used as an anti-grease coating on paper products) were present in surface waters at concentrations similar to those of perfluorooctanoate.

Tests were conducted to determine the in vitro toxicity of the flame retardant tetrabromobisphenol-A bis (2,3 dibromopropylether) and its individual degradation products. The least toxic of the flame retardants studied was tetrabromobisphenol-A bis (2,3 dibromopropylether), the parent compound, which appears to be non-toxic to both Rainbow Trout gill and liver cells. Two degradation products showed the highest toxicity (Br4BPA for gill cells and BPA for liver cells). The other breakdown products had a similar toxic potency. These results indicate that the parent compound is virtually non-toxic but the degradation products are toxic, with the first formed being the most toxic.

Studies on the long-range transport and physical-chemical properties of volatile methyl silicones (VMS) were conducted, and a method was developed to conduct trace analysis of these substances. This method was used for the determination of VMS at sites in north-central Ontario (Turkey Lakes research station), Yukon (Little Fox Lake), and Nunavut (near Resolute Bay). VMS were detected in all remote sites in nanogram per cubic metre concentrations. In samples from Resolute Bay, the VMS chemical known as D4 was detected, indicating long-range transport of VMS. These measures appear to be the first determinations of the levels of VMS in the Arctic and indicate possible global distribution of this chemical. In collaboration with scientists at the Université de Montréal, a mass spectrometry method was developed for online determination of VMS in wastewater treatment plant biogases. These gases are thought to be the main pathway of VMS to the environment. Research continues to determine the extent of VMS contamination of water and sediments.

Studies of lake sediment cores, glacial ice cores, and surface waters collected in 2008 in the Arctic continued to reveal new chemical contaminants entering the Arctic from long-range transport and atmospheric deposition. The use of samples from the Arctic allows an assessment of a chemical's potential to contaminate remote environments, which is a characteristic of POPs. Among the brominated flame retardants detected, the predominant chemical was decabromodiphenyl ether, a widely used flame retardant that is currently managed under CEPA  1999. Concentrations of this chemical were found to be increasing in both the ice cap (1995-2008) and in recent (post-1990) lake sediments. Brominated flame retardants were also detected in seawater in Barrow Strait (Lancaster Sound) and Rae Strait (near Gjoa Haven) at parts per quadrillion concentrations. The current-use pesticides endosulfan, chlorthalonil and dacthal were detected at low part per trillion concentrations in the Devon ice cap and in seawater samples.

Operation of a snow storage and disposal facility was investigated over two field seasons with respect to snowmelt flows, fluxes of chemicals contained in snowmelt, and direct effects on the receiving water. Study results indicate that the levels of chloride were highest in early-season snowmelt but were diluted to some extent during passage through the stormwater management system. Cyanide originating from anti-caking additives in road salts was measured in snowmelt and urban runoff samples in a number of areas affected by road salts. The results indicate a potential risk to the environment caused by cyanide compounds in road salts, but also highlight challenges in accurately measuring cyanide concentrations in urban water samples. Information on the winter runoff and snowmelt will be used in developing best management practices and guidance for road salt management and monitoring.

A preliminary study of the prevalence and extent of groundwater contamination discharging to urban streams was expanded to include Greenwood, Nova Scotia, Barrie and Burlington, Ontario, and Jasper, Alberta, making a total of seven urban areas examined across Canada in the last two years. Groundwater samples were obtained from below the stream beds using the new sampling method developed in 2008-2009. Samples were analyzed for a variety of CEPA 1999 substances from the first Priority Substance List (e.g., trichloroethylene and other chlorinated solvents, benzene, toluene, xylenes, inorganic arsenic) and the second Priority Substance List (e.g., road salt), as well as other contaminants. In every stream examined to date, previously unknown zones of contaminated groundwater were found, suggesting that contaminated groundwater discharging to Canadian streams may be more prevalent than currently believed.

3.2.4 Wildlife and Soil

3.2.4.1 Substance-specific Research

Studies continued on the fate and geographic and temporal trends of contaminants in Canadian and circumpolar Polar Bears (Ursus maritimus) and their food webs, and in relation to factors influenced by climate change. One study provided the first-known evidence that an earlier sea-ice breakup date, one effect of Arctic warming, has contributed to the dietary shift observed in Polar Bears from western Hudson Bay in the Canadian sub-Arctic. Furthermore, this research suggests that this dietary shift has contributed to accelerate the increase in the levels of some persistent and bioaccumulative contaminants in the bears from this subpopulation. The pollutants studied contain chlorine and bromine, including PCBs, organochlorine pesticides and PBDE flame retardants. To identify the sources of these contaminants, fatty acids and carbon isotopes were measured as dietary tracers. Over time, where the sea ice broke up at an earlier date, the dietary tracers showed that Polar Bears ate more open-water species, which accumulate higher contaminant levels.

Work continued on contaminant stress on thyroid systems in birds and other wildlife, and on biomarker methods to measure such thyroid system change. One in vitro study demonstrated the capacity of environmentally relevant concentrations of selected PCB and PBDE flame retardant congeners, and hydroxylated and methoxylated analogues, to competitively bind with thyroid hormones on human and gull albumin and transthyretin transport proteins. Results suggest that hydroxylated PCB and PBDE analogues may present an exposure concern to the thyroid system in free-ranging gulls and in humans.

Studies continued on emerging contaminants and their fate in marine mammals. One study, conducted in collaboration with Norwegian and Finnish researchers, investigated the concentrations and patterns of organochlorine pesticides as well as PBDE flame retardants and their hydroxylated PBDE analogues and metabolites in tissues and blood of Ringed Seals (Pusa hispida) from two populations with contrasting levels of contamination. Findings indicate that levels and patterns of organochlorine pesticides and PBDEs differ between the two populations, and that these differences may be due to their contrasting diet and exposure to contaminants.

Another study, conducted in collaboration with researchers from the United States, reported on the presence and concentrations of several congeners and classes of organohalogen contaminants (and/or their metabolites) in cerebrospinal fluid in dolphins and seals from the western North Atlantic. Cerebellum gray matter was also analyzed in three individual dolphins. The levels of all contaminants detected were higher in the cerebellum gray matter than in the cerebrospinal fluid. A number of organohalogen contaminants identified in the cerebrospinal fluid and cerebellum in this study have been shown to be developmental neurotoxicants in experiments with rodents. Although the possible effects of multiple and concurrent exposures to these contaminants remain unclear, additive and/or synergistic effects on the central nervous system should be considered.

Work continued on the identification, characterization, determination, and spatial and temporal trends of legacy and emerging contaminants in eggs of Herring Gulls (Larus argentatus) from sites across the Laurentian Great Lakes, as well as in eggs of fish-eating seabird bioindicator species and in other selected wildlife in the Arctic, Pacific and Atlantic marine environments and the St. Lawrence River–Great Lakes ecosystem. One study reported on the presence of perfluorinated carboxylates and sulfonates, as well as perfluorinated and polyfluorinated precursor compounds, in Herring Gull eggs from 15 colonies across the Great Lakes. The source of these compounds is likely the gull's aquatic diet. The level of contamination varied among gull colonies and lakes, with higher concentrations found in eggs from colonies in proximity to highly urbanized and industrialized sites in Lake Erie and Lake Ontario. This work has been expanded to contribute to an ongoing national contaminants monitoring program that assesses spatial and geographic trends in chemicals of concern in aquatic and terrestrial avian bioindicator species across Canada in industrial, rural and remote, and point-source sites. The findings from this monitoring program are used to evaluate environmental responses to post-regulatory actions, as part of the Chemicals Management Plan. Results from this program show that European Starlings (Sturnus vulgaris) nesting near landfill sites show elevated levels of perfluorooctane sulfonate, and Tree Swallows (Tachycineta bicolor) nesting near sewage treatment plants have detectable levels of bisphenyl A in their blood plasma but not in their eggs.

A study using the domestic chicken as a surrogate avian species for wild birds found that hexabromocyclododecane affected hatching success at concentrations similar to those detected in wild birds, and that the expression of a number of genes was altered in liver tissue. In another study, Dechlorane Plus, a flame retardant commonly detected in wild avian species, was administered to chicken liver cell cultures and whole embryos. Dechlorane Plus had no effect on hepatic function as measured through the expression of the genes selected. Hatching success was slightly decreased, but only when levels of Dechlorane Plus were 10-15 times greater than environmental levels.

The relative potencies of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) as inducers of cytochrome P4501A (an enzyme used as an environmental biomarker) were determined in Herring Gull liver cell cultures. PeCDF was determined to be approximately 20-fold more potent than TCDD. The findings of the study suggest that, in Herring Gulls, PeCDF was a more important contributor to "dioxin-like" toxic effects than TCDD, and that there is a need to re-evaluate the relative contributions of dioxin, dibenzofuran and PCB congeners in wild avian species.

Laboratory studies with liver cell cultures of three species of birds determined that highly purified (i.e., dioxin-free) hexachlorobenzene caused induction of cytochrome P4501A in each species. This is the first study to confirm that hexachlorobenzene meets one of the criteria for being formally considered a “dioxin-like” chemical for its possible inclusion into the “toxic equivalency” risk assessment scheme for wild birds.

Laboratory studies were conducted to determine the effects of perfluoroalkyl compounds on gene expression in cultured avian liver and brain cells. The principal focus of the work is to determine and predict the potential toxic effects of current-use perfluoroalkyl compounds.

The Glaucous Gull (Larus hyperboreus), an Arctic top predator, was used as a bioindicator for investigating relationships between contaminant levels (organochlorines and PCBs, mercury and selenium) and measures of oxidative stress in Canadian Arctic ecosystems. Contaminant levels were low, and associations between contaminant exposure and oxidative stress were weak. Nevertheless, glutathione peroxidase activity rose with increasing concentrations of selenium in the liver, levels of thiols declined as levels of mercury, organochlorines and PCBs rose, and, at one of the two study sites, levels of lipid peroxidation were elevated with increasing levels of mercury in the liver. These results suggest that contaminants may have a harmful effect on gull physiology even at low exposure levels.

Studies examined the effects and toxicokinetics of selected brominated flame retardants on captive American Kestrels (Falco sparverius), Zebra Finches (Taeniopygia guttata), Ranch Mink (Neovison vison) and Snapping Turtles (Chelydra serpentina). In kestrels, exposure to a commercial PBDE mixture and hexabromocyclododecane induced some changes in reproductive success and behaviour, as well as nestling growth and endocrine function. Zebra Finches exposed to a PBDE as nestlings showed effects on song and reproductive behaviours, but these were not associated with significant effects on brain morphology. In mink, a replacement brominated flame retardant (bis(2,4,6-tribromophenoxy)ethane, BTBPE) was found to accumulate largely in abdominal fat but not in the liver. Environmentally relevant exposures had minimal effects on reproduction, juvenile growth or thyroid function in minks. Contaminant uptake and possible oxidative stress in Snapping Turtles exposed to the BTBPE is currently an active area of research.  

Work was completed on the exposure of three species of owls to anti-coagulant rodenticides in British Columbia. Very high incidences of exposure to at least one current-use rodenticide were found in all species and were associated with acute poisoning in a number of cases.

An ongoing assessment of the impact of methyl mercury, lake acidity and related stressors on the breeding success of Common Loons (Gavia immer) and other wildlife across Canada continued through studies in Nova Scotia, Quebec, Ontario and western Canada. An assessment of the impacts of acid deposition on the biodiversity and abundance of aquatic invertebrates, amphibians and fish in acidic lakes began in Nova Scotia.

Studies of the toxicity of methyl mercury to developing avian embryos continued to be undertaken for a variety of seabird species, to determine the comparative sensitivities of these species to methyl mercury exposure and to estimate toxic-effect concentrations.

Exposure and effects studies of Bald Eagle (Haliaeetus leucocephalus) nestlings continued on the Pacific coast of North America. Results show that exposure of eagles to PCBs and dichlorodiphenyltrichloroethane (DDT)-related compounds was highly influenced by trophic level (i.e., level in the food chain). However, levels of brominated flame retardants did not appear to be influenced by trophic level, perhaps suggesting some capability of the animals to metabolize those chemicals. Findings indicate that PCBs continue to have an effect on eagle physiology, more than 30 years after their use was banned. In cooperation with colleagues from the United States, a long-term study of contaminants in Bald Eagles around the Great Lakes region was completed. Results showed that both PCBs and DDT negatively impacted reproductive success up until the early part of the last decade, although the mechanisms of action were not determined.

A collaborative study with colleagues in Wales showed that American (Cinclus mexicanus) and European populations of dippers were exposed to different patterns of persistent contaminants. Exposure of American Dippers to PCBs and brominated flame retardants was substantially greater as a result of their feeding on juvenile salmon, compared with the invertebrate diet of their European counterpart. Recent work has shown that the diet of female dippers changes during the breeding season, which has implications for interpretation of contaminants in eggs.

Studies on perfluoroalkyl compounds in the blood plasma of adult Snapping Turtles in AOCs in the Great Lakes revealed unexpectedly high concentrations of perfluorooctane and perfluorohexane sulfonate in turtles at a reference site. Source trackdown is under way, and the toxicity of these concentrations to turtles will be assessed by examining their thyroid function.

The absorption of PAHs from soil by Snapping Turtle eggs was assessed, as this species is known to use PAH-contaminated sites, such as roadsides and railroad beds, as nesting areas. Results indicate that the specific PAHs absorbed by turtle eggs varied depending on the immediate environment of the nest (soil vs. asphalt).

An ongoing assessment of genetic mutation rates of Double-crested Cormorants (Phalacrocorax auritus) from colonies downwind of steel mills continued in Hamilton Harbour. Airborne exposure to PAHs is being assessed through analysis of lung tissue, whereas fatty acids are being used to assess potential dietary exposure.

Investigations of the relationships between contaminant levels and parasite load in fish-eating birds (e.g., Double-crested Cormorants from the Great Lakes) continued, with the objective of improving the understanding of how contaminants and parasites may be interacting to affect the health of wildlife.

To provide guidance on the information requirements in the New Substances Notification Regulations, the persistence of 10 high-priority Domestic Substances List (DSL) microbial strains was assessed in soil microcosms. Two strains persisted for the entire incubation period of 180 days, while two other strains did not persist past 21 days. All other strains saw a gradual decline within the 180-day incubation period.

The toxicity and pathogenicity of Risk Group 2 high-priority DSL microbial strains to soil organisms and plants were assessed using the protocols recommended in Environment Canada's Guidance Document for Testing the Pathogenicity and Toxicity of New Microbial Substances to Aquatic and Terrestrial Organisms. Results demonstrate a reduction in plant growth with exposure to two microbial strains, and a reduction in soil invertebrate reproduction with exposure to four microbial strains. The results also provided data on test method validation, resulting in suggested method improvements and proposed changes to the current guidance document. The toxicity and pathogenicity data will contribute to the risk assessment of the high-priority DSL microbial strains.

Bioaccumulation and soil toxicity tests were completed using medium-priority chemical substances under the Chemicals Management Plan. The study evaluated the bioaccumulation potential of two organic compounds in earthworms in two different soil types. The results demonstrate that bioavailability depended on the soil type, and bioaccumulation depended on the chemical. This study provided bioaccumulation data for the validation of existing and new model estimates. The research also evaluated the toxicity of two organic and two inorganic compounds to a suite of terrestrial organisms (soil invertebrates and plants) in a sandy soil. The results of this study will provide biological response data to allow a more comprehensive assessment of selected priority Chemicals Management Plan substances, and improve the tools used for the assessment and management of other suspected persistent, bioaccumulative and inherently toxic chemicals.

3.2.4.2 Methodology

Work continued on new methods of measuring emerging contaminants in wildlife, including PFCs and replacement brominated flame retardants. A novel method was developed to identify and quantitatively determine perfluorooctane sulfonate in a commercial product and in environmentally relevant biological samples. With this method, perfluorooctane sulfonate-based compounds were identified in the technical product, in the eggs of Herring Gulls from the Great Lakes, and in the liver and blood plasma of Polar Bears from the Canadian Arctic.

Another method was developed to detect a number of emerging brominated flame retardant contaminants in wildlife. This new high-sensitivity analytical method was used to screen Herring Gull eggs collected from several sites in the Great Lakes and from a site in the St. Lawrence River. Two previously unstudied brominated flame retardant compounds were detected in gull eggs from these populations, indicating that these contaminants bioaccumulate to some degree in the Herring Gull food chain and are transferred to their eggs during development.

Several laboratory studies were conducted to determine and predict the sensitivity of avian species to the toxic effects of dioxins and dibenzofurans. The research resulted in a novel method that can be used to predict the sensitivity of any avian species to dioxins and dibenzofurans. This method is based on the genotype of the aryl hydrocarbon receptor, using small tissue or blood samples. The method will be useful for environmental risk assessments of the effects of dioxins and dioxin-like chemicals on wild birds.

Work continued on a project to develop and validate a practical in vitro and in vivobiomarker platform that can provide a rapid screening tool to assess the potential of chemical substances to cause early neurochemical and neuro-developmental toxicity in birds. The integrated suite of assays making up this biomarker platform will allow priority substances to be rapidly screened, in order to identify chemicals that may require more in-depth toxicological assessment.

A method to measure the stress hormone corticosterone in feathers collected from Herring Gulls was developed and validated. This method will provide a relative measure of ecosystem stress at different gull colonies throughout the Great Lakes Basin.

Work was initiated to develop amphibian laboratory exposures examining biological effects and mode of action of priority compounds of interest, to generate compound-specific risk assessments and risk management models. Methods development included establishing procedure parameters and endpoint measurements, which will lead to screening assays and standard methods for toxicity assessment using amphibians.

To develop guidance for the New Substances Notification Regulations, genomic tools are being evaluated to assess the presence of pathogens in bioengineered microbial consortia and to assess microbial community health.

3.2.5 Human Health

3.2.5.1 Air Quality Health Impacts

Analysis of results is ongoing for the Windsor health study, the Toronto case-control study of traffic-related air pollution and childhood asthma, and the east Montréal panel study on the health effects of industrial emissions among asthmatic children:

  • The Windsor health study is developing methods to more precisely estimate population exposure to source-specific air pollutants (ozone, sulfur dioxide, PM, nitric oxide, volatile organic compounds). The risks of hospitalization for cardio-respiratory diseases (e.g., asthma) are being estimated, including spatial variability. To date, the sources of air pollution in personal exposure have been distinguished. Analysis has identified eight sources of volatile organic compounds: four were attributed to outdoor sources and four to indoor sources. Vehicle exhaust and combustion products were the most significant sources contributing to personal exposure, followed by industrial emissions.

  • The Toronto case-control study analyzed exposure estimates by year of life for 750 asthma cases and 750 controls, and found an association between cumulative lifetime exposures to traffic-related air pollutants and the development of childhood asthma.

  • Data were collected for the east Montréal panel study to examine the personal exposure of 60 asthmatic school children (71 in total for the project). Participating children's cardiovascular/cardiopulmonary function was tested daily. Results from this study will assist in determining the impact of oil refinery emissions on the cardio-respiratory health of children living in proximity to the industrial sites.

Other recently initiated studies on air pollution and related health impacts are examining new endpoints not previously associated with exposure to air pollutants. These include stroke, appendicitis, headache and migraine, otitis media, and certain skin conditions.

Work is under way to establish a Canadian cohort to develop estimates of nitrogen dioxide, sulphur dioxide, ozone, and fine PM exposure based on remote-sensing methods and land-use regression models, as well as estimates of effects on cancer incidence and cause-specific mortality. Approximately 2.7 million Canadians across the country who completed the 1991 long-form census were followed in terms of their vital status, until 2001. This cohort was established by Statistics Canada. Several known mortality risk factors were reported in the long-form census, including education, race, ethnic origin, and income. Contextual mortality risk factors will be obtained from the 1991, 1996 and 2001 censuses.

A study on controlled human exposure to coarse PM is assessing health outcomes in study participants, including measures of inflammation and oxidative stress as well as cardiovascular and autonomic nervous system effects. 

A study to assess the adverse cardiovascular effects of air pollution on seniors was completed in 2009. This study followed seniors in Windsor, Ontario, who lived in nursing homes, to examine their exposure to particulate air pollution in indoor, outdoor and personal environments, and daily changes in their cardiovascular function and blood inflammatory mediators. The study found significant associations between daily elevated levels of PM, likely related to emissions from the transportation sector, and increased blood pressure, heart rate, vascular function mediators in blood, and an oxidative stress marker in seniors.       

Collection of baseline data for a range of air pollutants typically found in residences was completed for the Halifax indoor air quality study, and data analysis continues. A similar collaborative study was initiated in Edmonton to collect data for a range of air pollutants, including PM, ozone, nitrogen dioxide, volatile organic compounds, formaldehyde, carbon monoxide, dust and fungal contaminants. Similar studies have been carried out in Québec, Windsor and Regina. The results of these studies will provide information on the levels of exposure and sources of indoor air pollutants; this information will be used to develop guidelines and other actions to protect health.

Indoor air quality assessments were undertaken to update existing guidelines (nitrogen dioxide, fine PM) and to produce new guidelines for priority contaminants (toluene, benzene and naphthalene) and for ventilation. These will be published as residential indoor air quality guidelines or as scientific assessment documents, and will support the development of communication/outreach products for public health professionals and the general public.

Spatial monitoring of air pollutants was completed in Ottawa, Windsor, Hamilton and Winnipeg, to develop cost-effective methodologies for characterizing population exposures to outdoor air pollution. Results from these studies will be used to support community-based land-use planning and regulatory initiatives to improve population health.
     
The Montréal Congestive Heart Failure Study commenced, evaluating the exposures of 100 patients with advanced cardiac disease. It will continue through 2010–2011. In addition, a study investigating the exposure of pregnant women to a number of air pollutants associated with consumer products was initiated in Ottawa. This project will provide novel Canadian data for exposures to a potentially harmful contaminant (naphthalene) during pregnancy, and will be used for risk management decision making.

As part of an epidemiological study on infant/child asthma and allergies, and in support of national surveys of exposure to hazardous chemicals, a new gas chromatography–mass spectrometry method was developed to quantify a range of organic compounds in fine indoor dust. To expand exposure-monitoring methodologies, a new sampling method was developed that uses quartz filter wipes to collect samples from indoor window surfaces. Data generated from both of these approaches are currently being analyzed, while additional samples will continue to be collected.

In collaboration with the Canadian Healthy Infant Longitudinal Development Study, work was initiated to assess exposures during pregnancy to a suite of phthalates in approximately 1600 women from four locations across Canada. This project will contribute to the development of new methodologies to characterize sources of exposure using biomarkers and dust samples.

A draft of the Canadian Smog Science Assessment was completed. This document is a comprehensive review, co-led by Environment Canada and Health Canada, that considers atmospheric science, human health and ecosystem health, and will assist with decision making as Canada moves forward in the evolution of its air quality policies and development of air quality objectives. The assessment was expected to be released in the fall of 2010.

A health risk assessment evaluated the potential risks and benefits to the health of Canadians from the use of E10, a formulation of gasoline containing 10% ethanol per volume. The risk assessment of E10 fuel focused on the human health implications due to changes in air quality that might arise from its widespread use in Canada. Overall, there were no substantial differences in the predicted health effects for the widespread use of E10 fuel compared with the health effects attributable to conventional gasoline.

A human health risk assessment for inhaled manganese was completed. This assessment provides a detailed technical review of the science of the health effects of manganese, and includes a new health-based reference concentration for manganese in air, to replace the value established in 1994. A Canada Gazette, Part I notice of this human heath risk assessment is expected to be published in 2010–2011.

3.2.5.2 Exposure and Biomonitoring

The Canadian Health Measures Survey is a national survey carried out by Statistics Canada, in collaboration with Health Canada and the Public Health Agency of Canada, to collect information from Canadians about their health. Cycle 1 of the survey (2007–2009) included the collection of blood and urine samples from approximately 5600 randomly selected Canadians between the ages of 6 and 79, from 15 collection sites. One of the most important contributions of the survey will be to establish current population levels for a broad range of environmental chemicals. The results will also help focus future research efforts on the links between exposure and health, and provide information to guide action by governments. Biomonitoring data from the first cycle of the survey is expected to be released in August 2010. The second cycle of the survey was launched in September 2009 and includes children aged 3–5. Planning for the third cycle was initiated.

A study on the migration of BPA from plastic baby bottles, baby bottle liners and reusable polycarbonate drinking bottles was conducted. Data from the study were used in the recent CEPA 1999 risk assessment, and findings were published in a peer-reviewed journal. BPA has been measured in house dust samples from the Canadian House Dust Study.

A national survey of contaminants in Canadian drinking water continued. This three-year study is examining levels of disinfection by-products (both new and regulated) and selected emerging contaminants in Canadian drinking water. Sixty water treatment plants and distribution systems are being sampled across Canada. More than 100 water quality parameters and contaminant concentrations are being assessed for each location. The results, which are expected in 2011, will provide updated exposure data to be used in the preparation and update of Guidelines for Canadian Drinking Water Quality.

Studies also continued on dermal absorption of substances being assessed under the Chemicals Management Plan. Skin is a major route of entry to the human body for many substances, especially those in consumer products such as cosmetics. As a result, it is important to understand how chemicals are transported from the outer surface of the skin to internal layers and the circulatory system. This knowledge is especially important when trying to determine what types of chemicals individuals are exposed to, and how these may affect human health. This project is establishing routine test methods to measure the dermal absorption of chemicals that have been identified as being of high concern (priority) for human health, which will allow for more accurate estimates of exposure levels. Results are expected in 2011.

A national indoor air survey of chemicals is measuring selected priority chemicals in Canadian residential indoor air. Indoor air samples are being collected and analyzed in a randomly selected national sample of Canadian homes whose occupants are participating in the Canadian Health Measures Survey. At the same time, outdoor (ambient) air concentrations from selected major cities and rural areas are being determined in the sampling sites of NAPS, to generate baseline information for target chemicals in these areas. Results are expected in 2011.

Research continued to examine dietary exposures of young children to emerging POPs and plasticizers. This study is producing child-specific dietary exposure estimates for a number of emerging POPs and plasticizers. Foods frequently consumed by infants and young children are being analyzed for contaminants, including perfluorinated compounds, PBDEs, and BPA. This study will provide needed information on children's exposure to more short-lived contaminants (e.g., BPA) that are rapidly excreted and whose long-term exposure is not well-characterized by measurements in blood or other biological matrices. Results are expected in 2011.

3.2.5.3 Population Studies

Epidemiological studies were conducted to evaluate the relationship between population exposure to air pollution and mortality, hospital admissions, emergency room visits and infant health. Epidemiology panel studies were undertaken, using indoor, outdoor and personal air-pollutant exposure monitoring techniques, to assess children's exposure to source-specific pollutants and the relation to their cardiovascular and respiratory outcomes.

A Canadian study continued to evaluate the importance of sources of lead exposure, such as drinking water in contact with lead service lines as well as dust and paint, by comparing Canadian children aged 1–5 living in areas served by lead service lines to children of the same age living in similar homes served by non-lead pipes. Results are expected in 2011.

A biomonitoring study continued, focusing on environmental lead exposure in children from pre-1970s housing in St. John's, Newfoundland and Labrador. This study is measuring lead exposure (blood lead levels) in young children living in a range of housing ages in St. John's. Concurrent measurement of residential lead levels in the sample households will permit an evaluation of exposure sources. Results are expected in 2011.

Health Canada continued to refine the Air Quality Benefit Assessment Tool (AQBAT) to estimate the health benefits of air pollution reductions and risk management strategies. Methodologies for the analysis of life expectancy and quality-of-life impacts of ozone and PM were developed. A systematic review of the association between air pollution exposure and adverse pregnancy outcomes is under way. Mortality data for Montréal are being analyzed to develop risk estimates for the most highly susceptible population groups. In addition, hospital admission data are being analyzed to update the AQBAT. Other upgrades are under way, including collating 2006 census geography and population counts; updating baseline data on air pollutant levels, population projection, mortality, hospital admissions and emergency-room visits by age and disease category; and interactively mapping AQBAT health outcome estimates for Canada.

The ongoing Maternal-Infant Research on Environmental Chemicals study is assessing the pregnancy health risks that may be associated with environmental exposure to heavy metals (lead, mercury, cadmium, arsenic and manganese). The health risks being assessed include elevated blood pressure and gestational hypertension among the women, and fetal growth retardation. As of March 2010, 1200 pregnant women had been recruited from the 12 selected clinical sites in 10 Canadian cities. Approximately 82 000 biospecimens have been collected and 25 000 chemical analyses performed. Recruitment should be completed by the fall of 2010, and the final report is expected in March 2012.

A study on plastics and personal care products used during pregnancy is recruiting 80 pregnant women from the Ottawa area and collecting multiple maternal urine samples, detailed consumer product/food packaging diaries, infant urine and meconium, and breast milk samples. Meconium is being evaluated as a potential matrix for measuring in utero exposure. Biospecimens are being analyzed for phthalates and their metabolites, BPA, triclosan and triclocarban. In 2009-2010, researchers continued recruitment for the study, trained research staff, worked on developing analytical methods and a database, pilot-tested and revised the study diary, and began analyzing biospecimens.

A pilot study on chronic lead exposure among Canadians is assessing the feasibility of obtaining bone and blood lead measurements for different age and gender cohorts, to measure acute and chronic non-occupational lead exposure in the Canadian population. During the reporting period, the study protocol and survey instruments were finalized, and participant recruitment and lead assessments were undertaken. Recruitment and the collection and analysis of blood samples and bone scans in the remaining age/gender categories, along with lead assessments, will be completed by March 2011.

3.2.5.4 Mechanistic Studies

Work continued on analyses to identify biomarkers, in human plasma, of oxidative stress and endothelial dysfunction (a pathology of the blood vessels), to further the understanding of mechanistic links between pollutant exposures and pregnancy outcomes. This work was an additional component of the Maternal-Infant Research on Environmental Chemicals study.

Methods to conduct cell transformation assays using serum-free media were refined. This methodology significantly reduces the time required to complete the assay and is expected to reduce inter-laboratory variability. These assays will fill an important regulatory testing gap and improve the early identification of chemicals that are carcinogenic by mechanisms that do not involve direct DNA mutation.

The cardiopulmonary and metabolic responses of mice exposed to titanium dioxide nanoparticles, carbon black particles and diesel exhaust particulates were investigated using toxicogenomic approaches.

Studies examined the quantitative relationships between the outcome of in vitro and in vivo genotoxicity tests that are commonly used for regulatory decision making, to better understand the conditions under which in vitro studies can provide direct predictions of the risks of genotoxicity in vivo.

3.2.5.5 Hazard Identification

Ongoing in vivo studies examined the impact of perinatal exposure to a chemical mixture on the development of brain neuro-immunoinflammatory changes that are associated with age-related neuro-degeneration in diseases like Parkinson's.

Ongoing studies compared the effects of environmental contaminants, administered either separately or as part of a mixture, on rat neuro-development. Potential molecular biomarkers of neurotoxicity identified in previous studies are being monitored to better understand the possible interactions resulting from simultaneous exposure to multiple environmental contaminants.

Ongoing in vivo and in vitro studies were conducted to investigate the mode and mechanism of actions of priority substances (e.g., mixtures of endocrine disrupters) under the Chemicals Management Plan. The objective of these studies is to identify the critical period of development (in utero and/or the postnatal periods) during which these chemicals may induce long-term adverse health effects such as cancer, abnormal adulthood hormonal stress response, and hormonal metabolism.

Studies continued to investigate whether very low doses of BPA and other Chemicals Management Plan priority chemicals can induce the formation of fat cells from precursor cells. In addition, collaborative studies are examining the impact of these substances on the function of pancreatic cells, to identify substances that could cause or exacerbate diabetes. Results of both of these studies will be published by early 2011. These studies will indicate which substances may pose risks of inducing metabolic syndrome.

3.3 Objectives, Guidelines and Codes of Practice

3.3.1 Environmental Quality Guidelines

Environmental quality guidelines specify recommendations in quantitative or qualitative terms to support and maintain particular uses of the environment, such as protection of aquatic life and land uses (including agricultural, industrial, commercial and residential/park land). Table 1 lists the environmental quality guidelines that were published or were being developed nationally through the Canadian Council of Ministers of the Environment (CCME) in 2009-2010. During the same period, Environment Canada embarked on developing federal environmental quality guidelines for various chemicals identified in the Chemicals Management Plan (Table 1). Where federal priorities align with those of the CCME (i.e., those of the various provincial and territorial jurisdictions), the federal environmental quality guidelines will be tabled with the CCME for consideration as national values.

Table 1: Environmental quality guidelines from April 2009 to March 2010
Guideline
Published
In Progress
Canadian Council of Ministers of the Environment (federal, provincial and territorial)
Water
  • Boron
  • Carbaryl
  • Endosulfan
  • Uranium
  • Zinc
Soil
  •  n/a
  • N-Hexane
  • Nickel
  • Zinc
Chemicals Management Plan (federal)
Water
  • Alcohol ethoxylates*
  • Siloxanes (D4, D5)*

 

  • Chlorinated paraffins
  • Cobalt
  • Hydrazine
  • Pentachlorophenol
  • PBDEs
  • Vanadium oxide
Sediment
  • Siloxanes (D4, D5)*
  • Chlorinated paraffins
  • PBDEs
Tissue (fish)
  • n/a
  • Chlorinated paraffins
  • PBDEs

* Available on request; formal publication pending.

3.3.2 Drinking Water Quality

Health Canada develops the Guidelines for Canadian Drinking Water Quality, as well as Guideline Technical Documents and Guidance Documents, under the authority of CEPA 1999.

Priorities for developing Guideline Technical Documents and Guidance Documents under the Guidelines for Canadian Drinking Water Quality are established in consultation with the provinces and territories.

Guideline Technical Documents, which establish a guideline value (usually a maximum acceptable concentration), are developed for drinking water contaminants that meet the following criteria:

  • exposure to the contaminant could lead to adverse health effects;
  • the contaminant is frequently detected or could be expected to be found in a large number of drinking water supplies throughout Canada; and
  • the contaminant is detected, or could be expected to be detected, at a level that is of possible health significance.

Guidance Documents do not establish limits for parameters. They are developed for parameters that do not meet all three of these criteria, either to provide operational or management guidance related to specific drinking water-related issues (such as boil water advisories), or to make risk assessment information available when a guideline is not deemed necessary.

Table 2 lists the technical and guidance documents that were published or in progress in 2009-2010.

Table 2: Guidelines and guidance documents for Canadian drinking water quality from April 2009 to March 2010
Published
In Progress
Guideline Technical Documents
  • 2-methyl-4-chlorophenoxyacetic acid
  • Benzene
  • Chlorine
  • Radiological characteristics

 

  • 1,2-dichloroethane
  • 2,4-dichlorophenoxyacetic acid
  • Ammonia
  • Carbon tetrachloride
  • Chromium
  • N-nitrosodimethylamine
  • Dichloromethane
  • Enteric viruses
  • Fluoride
  • Nitrate/nitrite
  • N-nitrosodimethylamine
  • Protozoa
  • Selenium
  • Tetrachloroethylene
  • Vinyl chloride
Guidance Documents
  • Controlling corrosion in drinking water distribution systems
  • Heterotrophic plate count

 

3.3.3 Air Quality Guidelines

In 2009-2010, Health Canada issued a notice for proposed residential indoor air quality guidelines for carbon monoxide, and a notice for proposed residential indoor air quality guidelines for ozone.

3.4 State of the Environment Reporting

State of the environment reports and environmental indicators provide Canadians with information and knowledge about current environmental issues, and establish reliable scientific trend data that support informed policy and decision making. The Canadian Environmental Sustainability Indicators (CESI) are a system of national environmental indicators used to inform citizens about the state of the Canadian environment and to provide policy makers and researchers with a baseline of authoritative, best-available information in relation to key environmental issues.

Environmental indicators provide a simple way to convey complex information on the environment, much like the gross domestic product, the consumer price index and the unemployment rate do for the economy. The CESI, which are produced by Environment Canada in partnership with Health Canada and Statistics Canada and are supported by provincial and territorial contributions, bring together environmental information from federal, provincial and territorial governments, who share responsibilities for environmental management in Canada. A variety of scientists from the three partner departments and elsewhere across the federal government, along with provincial and territorial experts, contribute advice, data and reviews to ensure the best available information is provided.

The selection of environmental indicators is strongly dependent on available long-term data that are consistent across time and geographies. Indicator development includes efforts to improve indicators so that they are more representative, credible, transparent, relevant and understandable. Some of these aspects are also improved through the design of charts and maps, the inclusion of clear source and methods documentation, and the appropriate explanations and linkages to social-economic pressures and implications.

CESI for air quality, water quality, GHG emissions and protected areas were released in the spring of 2010. The Air Quality Indicators track ground-level ozone and fine PM, two key components of smog that are among the most widespread air pollutants. The CESI initiative supports hundreds of monitoring stations to produce the indicators, in particular a core network of 153 water sampling stations. The Water Quality Indicator measures the extent and severity of water pollution by tracking a wide range of substances in water across Canada. The Greenhouse Gas Indicator tracks Canada's GHG emissions. Finally, the Protected Areas Indicator tracks progress in setting aside natural areas across Canada. Findings provide important context for the Government's actions on clean air, clean water, climate change and the conservation of natural environments.

Key national results for the 2009 reporting cycle include the following:

  • Air quality – Nationally, ground-level ozone exposure increased approximately 13% from 1990 to 2007, but this increasing trend in annual ozone exposure has slowed in recent years. No trend was detected in fine PM exposure from 2000 to 2007.
  • Water quality – From 2005 to 2007, the Water Quality Index for the Protection of Aquatic Life was rated as "excellent" at 10 sites (7%), "good" at 49 sites (32%), "fair" at 66 sites (43%), "marginal" at 22 sites (14%), and "poor" at 6 sites (4%).
  • GHGs – Emissions in 2008 were 24% higher than those in 1990. Emissions peaked in 2007 at 750 megatonnes, and declined by 0.8% from 2003 to 2008.
  • Protected areas – Canada had protected 9.4% (939 993 square kilometres) of its land as of mid-2009, and approximately 0.6% of its marine territory. Since 1990, the overall area of protected land and water in Canada has increased by approximately 81%.

In 2009-2010, the CESI website was updated and redesigned. This new website features the following enhancements:

  • further refinements to text and structure, in order to present information in a more concise and less technical manner;
  • simplified links from indicator results to their key social and economic drivers, as well as to the individual or household level;
  • a new mapping application that allows users to view and search for local or regional information on a map, select indicators and views, and export to Google Earth; and
  • easier and simpler navigation.

The 2008 Federal Sustainable Development Act requires Environment Canada to establish the Federal Sustainable Development Strategy in 2010, with goals and targets, and to provide a progress report at least once every three years. A consultation paper was released to the public in March 2010 to provide guidance for implementing the new strategy. As part of the process of developing federal goals and targets for sustainable development and determining which organizations will be responsible for meeting them, Environment Canada is using CESI and other federal government indicators to provide accountability for results.

The Federal Sustainable Development Strategy encompasses broad themes, which cross Canada's national and provincial borders. The themes to be covered are 1) addressing climate change and air quality, 2) maintaining water quality and availability, and 3) protecting nature (plus a theme focused on shrinking the environmental footprint of government operations). Work is under way to expand the suite of indicators under the program, and a relatively large suite of indicators will be covered within the three-year time frame of the first version of the Federal Sustainable Development Strategy.

3.5 Gathering and Reporting of Pollution and Greenhouse Gas Information

3.5.1 National Pollutant Release Inventory

The National Pollutant Release Inventory (NPRI) is Canada's legislated, publicly accessible inventory of pollutant releases (to air, water and land), disposals and transfers for recycling. The NPRI includes information reported by industrial facilities, and comprehensive emission summaries and trends for key air pollutants in Canada. It is an important source of information for identifying, assessing and managing risks to the environment and human health. Public access to the NPRI encourages industry to prevent and reduce pollutant releases, and improves public understanding about pollution and environmental performance in Canada.

The following publications were released in 2009-2010:

  • 2007 Air Pollutant Emissions Data and Updated Trends (June 2009);
  • Environment Canada's Response to the Final Report of the National Pollutant Release Inventory Multi-Stakeholder Work Group on Substances 2008 (February 2010);
  • Reviewed NPRI facility data for 2008 was published in November 2009, including NPRI 2008 Highlights, a 2008 Facility Data Summary, resources for accessing NPRI facility data in various formats, and frequently asked questions.

3.5.2 Greenhouse Gas Emissions Reporting Program

This reporting program lays the foundation for the development of a single, domestic, mandatory GHG reporting system, in order to meet the GHG reporting needs for all jurisdictions and minimize the reporting burden for industry and government. The program's main objectives are to provide Canadians with timely information on these emissions, enhance the level of detail in the National Greenhouse Gas Inventory, support the development of GHG regulations for large industrial emitters, and meet provincial and territorial requirements for information on these emissions. The data are collected under three acts: by Environment Canada under CEPA 1999, by Statistics Canada under the Statistics Act, and by Alberta Environment under the Climate Change and Emissions Management Act.

The Greenhouse Gas Emissions Reporting Program: Overview of 2008 Facility Data was released on December 4, 2009. Key data tables and a dynamic search tool to query the reported data were also made available.