Biological test method: fertilization assay using echinoids (sea urchins and sand dollars), chapter 13


Appendices

  1. Biological Test Methods and Supporting Guidance Documents Published by Environment Canada’s Method Development & Applications Unit
  2. Members of the Inter-Governmental Environmental Toxicity Group (as of October 2009)
  3. Environment Canada Regional and Headquarters’ Office Addresses
  4. Review of Procedural Variations Used by Previous Authors and Groups for Fertilization Assays Using Sea Urchins and Sand Dollars
  5. Bibliography. Additional Papers Directly Relevant to Canadian Echinoid Fertilization Assay
  6. Logarithmic Series of Concentrations Suitable for Toxicity Tests

Appendix A: Biological Test Methods and Supporting Guidance Documents Published by Environment Canada’s Method Development & Applications UnitFootnote 82

A. Generic (Universal) Biological Test Methods
Title of Biological Test Method or Guidance Document Report
Number
Publication
Date
Applicable
Amendments
Acute Lethality Test Using Rainbow Trout EPS 1/RM/9 July 1990 May 1996 and
May 2007
Acute Lethality Test Using Threespine Stickleback (Gasterosteus aculeatus) EPS 1/RM/10 July 1990 March 2000
Acute Lethality Test Using Daphnia spp. EPS 1/RM/11 July 1990 May 1996
Test of Reproduction and Survival Using the Cladoceran Ceriodaphnia dubia EPS 1/RM/21
2nd Edition
February 2007 --
Test of Larval Growth and Survival Using Fathead Minnows EPS 1/RM/22
2nd Edition
February 2011 --
Toxicity Test Using Luminescent Bacteria (Photobacterium phosphoreum) EPS 1/RM/24 November 1992 --
Growth Inhibition Test Using a Freshwater Alga EPS 1/RM/25
2nd Edition
March 2007 --
Acute Test for Sediment Toxicity Using Marine or Estuarine Amphipods EPS 1/RM/26 December 1992 October 1998
Fertilization Assay Using Echinoids (Sea Urchins and Sand Dollars) EPS 1/RM/27
2nd Edition
February 2011 --
Toxicity Tests Using Early Life Stages of Salmonid Fish (Rainbow Trout) EPS 1/RM/28
2nd Edition
July 1998 --
Test for Survival and Growth in Sediment Using the Larvae of Freshwater Midges (Chironomus tentans or Chironomus riparius) EPS 1/RM/32 December 1997 --
Test for Survival and Growth in Sediment Using the Freshwater Amphipod Hyalella azteca EPS 1/RM/33 December 1997 --
Test for Measuring the Inhibition of Growth Using the Freshwater Macrophyte, Lemna minor EPS 1/RM/37
2nd Edition
January 2007 --
Test for Survival and Growth in Sediment Using Spionid Polychaete Worms (Polydora cornuta) EPS 1/RM/41 December 2001 --
Tests for Toxicity of Contaminated Soil to Earthworms (Eisenia andrei, Eisenia fetida, or Lumbricus terrestris) EPS 1/RM/43 June 2004 June 2007
Tests for Measuring Emergence and Growth of Terrestrial Plants Exposed to Contaminants in Soil EPS 1/RM/45 February 2005 June 2007
Test for Measuring Survival and Reproduction of Springtails Exposed to Contaminants in Soil EPS 1/RM/47 September 2007 --
B. Reference Methods Table note a
Title of Biological Test Method or Guidance Document Report
Number
Publication
Date
Applicable
Amendments
Reference Method for Determining Acute Lethality of Effluents to Rainbow Trout EPS 1/RM/13
2nd Edition
December 2000 May 2007
Reference Method for Determining Acute Lethality of Effluents to Daphnia magna EPS 1/RM/14
2nd Edition
December 2000 --
Reference Method for Determining Acute Lethality of Sediment to Marine or Estuarine Amphipods EPS 1/RM/35 December 1998 --
Reference Method for Determining the Toxicity of Sediment Using Luminescent Bacteria in a Solid-Phase Test EPS 1/RM/42 April 2002 --
C. Supporting Guidance Documents
Title of Biological Test Method or Guidance Document Report
Number
Publication
Date
Applicable
Amendments
Guidance Document on Control of Toxicity Test Precision Using Reference Toxicants EPS 1/RM/12 August 1990 --
Guidance Document on Collection and Preparation of Sediment for Physicochemical Characterization and Biological Testing EPS 1/RM/29 December 1994 --
Guidance Document on Measurement of Toxicity Test Precision Using Control Sediments Spiked with a Reference Toxicant EPS 1/RM/30 September 1995 --
Guidance Document on Application and Interpretation of Single-Species Tests in Environmental Toxicology EPS 1/RM/34 December 1999 --
Guidance Document for Testing the Pathogenicity and Toxicity of New Microbial Substances to Aquatic and Terrestrial Organisms EPS 1/RM/44 March 2004 --
Guidance Document on Statistical Methods for Environmental Toxicity Tests EPS 1/RM/46 March 2005 June 2007
Procedure for pH Stabilization During the Testing of Acute Lethality of Wastewater Effluent to Rainbow Trout EPS 1/RM/50 March 2008 --
Supplementary Background and Guidance for Investigating Acute Lethality of Wastewate Effluent to Rainbow Trout -- March 2008 --

Appendix B: Members of the Inter-Governmental Environmental Toxicity Group (as of October 2009)

Federal, Environment Canada

Suzanne Agius
Marine Protection Programs Section
Gatineau, Québec

Adrienne Bartlett
National Water Research Institute
Burlington, Ontario

Christian Blaise
Centre St. Laurent
Montréal, Québec

Joy Bruno
Pacific & Yukon Laboratory for Environmental Testing
North Vancouver, British Columbia

Craig Buday
Pacific & Yukon Laboratory for Environmental Testing
North Vancouver, British Columbia

Ken Doe
Atlantic Laboratory for Environmental Testing
Moncton, New Brunswick

Garth Elliott
Prairie & Northern Laboratory for Environmental Testing
Edmonton, Alberta

François Gagné
Fluvial Ecosystem Research
Montréal, Québec

Patricia Gillis
Aquatic Ecosystem Protection Research Division
Burlington, Ontario

Manon Harwood
Québec Laboratory for Environmental Testing
Montréal, Québec

Dale Hughes
Atlantic Laboratory for Environmental Testing
Moncton, New Brunswick

Paula Jackman
Atlantic Laboratory for Environmental Testing
Moncton, New Brunswick

Nancy Kruper
Prairie & Northern Laboratory for Environmental Testing
Edmonton, Alberta

Michelle Linssen-Sauvé
Pacific & Yukon Laboratory for Environmental Testing
North Vancouver, British Columbia

Danielle Milani
Aquatic Ecosystem Impacts Research Division
Burlington, Ontario

Warren Norwood
Aquatic Ecosystem Protection Research Division
Burlington, Ontario

Heather Osachoff
Pacific & Yukon Laboratory for Environmental Testing
North Vancouver, British Columbia

Joanne Parrott
Aquatic Ecosystem Protection Research Division
Burlington, Ontario

Linda Porebski
Marine Protection Programs Section
Gatineau, Québec

Juliska Princz
Science & Technology Laboratories
Ottawa, Ontario

Jessica Rahn
Science & Technology Laboratories
Ottawa, Ontario

Grant Schroeder
Pacific & Yukon Laboratory for Environmental Testing
North Vancouver, British Columbia

Rick Scroggins
Science & Technology Laboratories
Ottawa, Ontario

Rachel Skirrow
Pacific & Yukon Laboratory for Environmental Testing
North Vancouver, British Columbia

Troy Steeves
Atlantic Laboratory for Environmental Testing
Moncton, New Brunswick

David Taillefer
Marine Environmental Protection
Gatineau, Québec

Lisa Taylor (Chairperson)
Science & Technology Laboratories
Ottawa, Ontario

Sylvain Trottier
Québec Laboratory for Environmental Testing
Montréal, Québec

Graham van Aggelen
Pacific & Yukon Laboratory for Environmental Testing
North Vancouver, British Columbia

Leana Van der Vliet
Science & Technology Laboratories
Ottawa, Ontario

Brian Walker
Québec Laboratory for Environmental Testing
Montréal, Québec

Peter Wells (Emeritus)
Environmental Conservation Service
Dartmouth, Nova Scotia

Federal, Fisheries & Oceans Canada

Robert Roy
Institut Maurice Lamontagne
Mont-Joli, Québec

Federal, Natural Resources Canada

Melissa Desforges
Ecosystem Risk Management Program
Mining & Mineral Sciences Laboratory, CANMET NRCan
Ottawa, Ontario

Morgan King
Ecosystem Risk Management Program
Mining & Mineral Sciences Laboratory, CANMET NRCan
Ottawa, Ontario

Philippa Huntsman-Mapila
Ecosystem Risk Management Program
Mining & Mineral Sciences Laboratory, CANMET NRCan
Ottawa, Ontario

Carrie Rickwood
Ecosystem Risk Management Program
Mining & Mineral Sciences Laboratory, CANMET NRCan
Ottawa, Ontario

Bernard Vigneault
Ecosystem Risk Management Program
Mining & Mineral Sciences Laboratory, CANMET NRCan
Ottawa, Ontario

Provincial

Richard Chong-Kit
Ontario Ministry of Environment
Etobicoke, Ontario

Kim Hunter
Ontario Ministry of Environment
Etobicoke, Ontario

David Poirier
Ontario Ministry of Environment
Etobicoke, Ontario

Julie Schroeder
Ontario Ministry of Environment
Toronto, Ontario

Trudy Watson-Leung
Ontario Ministry of Environment
Etobicoke, Ontario

Private Research Facilities/ Others

Christian Bastien
Centre d’expertise en analyse environnementale du Québec
Ste. Foy, Québec

Barbara Bayer
Manitoba Technology Centre, ALS Laboratory
Winnipeg, Manitoba

Mary Moody
Saskatchewan Research Council
Saskatoon, Saskatchewan

Jim Somers
Standards Council of Canada
Ottawa, Ontario

Appendix C: Environment Canada Regional and Headquarters’ Office Addresses

Headquarters
351 St. Joseph Boulevard
Place Vincent Massey
Gatineau, Quebec
K1A 0H3

Atlantic Region
15th Floor, Queen Square
45 Alderney Drive
Dartmouth, Nova Scotia
B2Y 2N6

Quebec Region
8th Floor
105 McGill Street
Montreal, Quebec
H2Y 2E7

Ontario Region
4905 Dufferin St., 2nd Floor
Downsview, Ontario
M3H 5T4

Western and Northern Region
Room 210, Twin Atria No. 2
4999 - 98th Avenue
Edmonton, Alberta
T6B 2X3

Pacific and Yukon Region
401 Burrard Street
Vancouver, British Columbia
V6C 3S5

Appendix D: Review of Procedural Variations Used by Previous Authors and Groups for Fertilization Assays Using Sea Urchins and Sand Dollars

Based on documents available to the authors in March, 1992. The following elements of procedure are omitted because they were common to all tests, or could be easily adapted to all methods covered here.

  1. Static tests - All exposure and fertilization was in small vessels without renewal of solutions.
  2. Test substance - All methods could be used for pure chemicals, formulations, wastewaters, or samples of seawater, by adjusting salinity as is common practice in the methods reviewed.
  3. Endpoints - The usual endpoint was reduced fertilization compared to control. All methods appear suitable for estimating ICp and NOEC/LOEC by usual statistical techniques.

Explanation of authors or originating agency.

Beak 1988 is the Canadian consulting company, listed in the references.

EVS 1989 is the Canadian consulting company, listed in the references.

B.C. MOE 1990 is British Columbia Ministry of Environment, and includes van Aggelen (1988).

IGATG 1991 includes that reference and Jonczyk et al. (1991).

Dinnel et al. 1987 with co-authors, represents a major school or approach in echinoid testing.

USEPA 1988 is in the book of methods published by the Cincinnati office of EPA.

ASTM 1990 is a subcommittee developing a standard method, chairman G.A. Chapman.

NCASI 1991 and 1992 are in reference list; a scientific group sponsored by pulp and paper industry.

USEPA (Pac. 91) is in reference list as Chapman (1991), a Pacific-coast method for interlaboratory comparisons, which prompted documents from U.S. consultants (see following).

USEPA (Pac. 92) is Chapman (1992) in reference list, a draft Pacific-coast method of EPA.

Kobayashi 1971 represents the early methods used by this productive researcher.

Kobayashi 1984 represents a later synopsis of methods by this researcher.

S. Calif. Project was a regional pollution research agency, in references as Oshida et al., 1981.

Nacci et al. 1986 is a publication cited by others as a source of methods.

Cherr et al. 1987 are authors from the Bodega Marine Lab.

BML 1991 is in references, and is Bodega Marine Lab, part of Univ. of California.

ERCEES 1990 is a U.S. consulting company in California and is in reference list.

MECAS 1990 is a U.S. consulting company in California and is in reference list.

NWAS 1990 is a U.S. consulting company on the west coast and is in reference list.

The order of listing is (1) Canadian laboratories, (2) major committees, government agencies, laboratories and schools (which happen to be in the United States), and (3) consulting laboratories and major authors. Detailed methods of Pagano and colleagues were not clear from papers and have been omitted.

Abbreviations:
lab. = laboratory
N.I. = not indicated
c/d water = control/dilution water
Pac. = Pacific
reconst. = reconstituted
s.u. = sea urchin(s)
s.d. = sand dollars(s)

1. Species and Availability of Adults
Document Species, Information Given on Location, Collection, Spawning Season
Beak 1988 Lytechinus pictus Californian urchin, purchased. Spawning condition year-round. Strongylocentrotus droebachiensis green sea urchin, Canadian Atlantic, Pacific, Arctic. Said to spawn March to April.
EVS 1989 S. purpuratus Pacific purple sea urchin. Collect from clean locations or purchase.
Spawns Dec. to March.
S. droebachiensis as above.
S. franciscanus red sea urchin, Pacific. Spawns April-May.
Dendraster excentricus “eccentric sand dollar” of the Pacific, said to spawn late spring and summer
B.C. MOE 1990 D. excentricus eccentric sand dollar as above, but said to spawn June to Nov.
IGATG 1991 S. droebachiensis as above, but spawns Feb. to March or April
L. pictus, as above.
Dinnel et al. 1987 S. purpuratus Ripe Dec. to March, longer in lab.
S. droebachiensis as above. Ripe Jan. to April, longer in lab.
S. franciscanus as above.
D. excentricus as above. Ripe May to October.
USEPA 1988 Arbacia punctulata “Arbacia”, or Atlantic purple sea urchin. May be purchased.
ASTM 1990 A. punctulata as above.
D. excentricus as above.
S. purpuratus as above.
S. droebachiensis as above. Other species may be used if necessary
NCASI 1991, 1992 D. excentricus as above. Spawn all year except late Dec. to late Jan. by arranging laboratory holding conditions.
S. purpuratus Spawns Jan. to June by lab. holding.
S. droebachiensis as above. Also Jan. to June by lab. holding.
USEPA (Pac. 91) S. droebachiensis as above.
USEPA (Pac. 92) S. purpuratus as above.
Kobayashi 1971 Hemicentrotus pulcherrimus a sea urchin, Japan. Spawns Jan. to March.
Anthocidaris crassispina a sea urchin, Japan. Spawns May to Aug.
Temnopleurus toreumaticus a sea urchin, Japan. Spawns July to Oct.
Pseudocentrotus depressus a sea urchin, Japan. Spawns Oct. to Nov.
Kobayashi 1984 Same as Kobayashi 1971 except T. toreumaticus not mentioned.
S. Calif. Project S. purpuratus as above. Collect by hand.
Nacci et al. 1986 A. punctulata as above.
Cherr et al. 1987 S. purpuratus as above.
BML 1991 S. purpuratus as above.
ERCEES 1990 S. purpuratus as above. Collect or purchase.
A. punctulata as above. Collect or purchase.
Lytechinus sp. as above. Collect or purchase.
D. excentricus as above. Collect or purchase.
MECAS 1990 N.I.
NWAS 1990 S. purpuratus as above.
D. excentricus as above. Purchased as necessary.
2. Holding Adults in the Laboratory
Document Duration Water Feeding
Beak 1988 5 d reconstituted seawater romaine lettuce? s.u. given macroalga
EVS 1989 ≤9 wk flowing seawater at 0.1 L/min per shallow tray, or static with monthly replacement s.u.with brown macroalga
s.d. with eel grass
B.C. MOE 1990 N.I. unfiltered flowing seawater s.d. not fed
IGATG 1991 ≥7 d green s.u., flowing seawater white s.u. in reconst. seawater green s.u., brown macroalga s.u. kelp or romaine lettuce
Dinnel et al. 1987 N.I. flowing seawater, filtered recirculation with filter s.u. macroalga
s.d. plankton and detritus
USEPA 1988 N.I. filtered seawater, 5 L/min, for 20-L tank with 20 adults, or recirculated reconst. seawater s.u. kelp or romaine lettuce
ASTM 1990 N.I. reconstituted seawater, or unfiltered seawater s.u., macroalga, R. lettuce s.d., microalgae
NCASI 1991, 1992 N.I. unfiltered seawater, 1 to 2 L/min to 160-L tank s.d. algal growth flake food
s.u. macroalga, romaine lettuce
USEPA (Pac. 91) N.I. N.I N.I.
USEPA (Pac. 92) N.I. filtered seawater, 5 L/min, or recirculated reconst. seawater kelp or romaine lettuce
Kobayashi 1971 ≤2 d N.I. N.I.
Kobayashi 1984 ≤2 d N.I. N.I.
S. Calif. Project N.I. recirculated seawater brown alga
Nacci et al. 1986 N.I. N.I. N.I.
Cherr et al. 1987 N.I. flowing seawater macroalga
BML 1991 N.I. N.I. N.I.
ERCEES 1990 N.I. seawater brought in weekly giant kelp
MECAS 1990 0 to 2 d flowing seawater N.I.
NWAS 1990 days/mos. seawater, flowing or partly recirculated s.u. kelp or lettuce
s.d. plankton and detritus
3. Holding Conditions for Adults
Document Species Temperature
(°C)
Salinity
(g/kg)
Oxygen
(% sat’n)
Lighting
Beak 1988 Lytechinus anamesus 15 30 N.I. N.I.
EVS 1989 various spp. s.u. ~10 28 airstones constant
EVS 1989 D. excentricus 15 28 airstones dark photoperiod
B.C. MOE 1990   N.I. 27 to 30 N.I. N.I.
IGATG 1991 S. droebachiensis 9 30 N.I. N.I.
IGATG 1991 L. pictus 15 30 N.I. N.I.
Dinnel et al., 1987 Strongylocentrotus natural      
Dinnel et al., 1987 D. excentricus seasonal ≥27 N.I. N.I.
USEPA 1988 A. punctulata 15 ± 3 30 N.I. N.I.
ASTM 1990 Strongylocentrotus 8 to 10 25 to 35 50 to 100% N.I.
ASTM 1990 D. Excentricus 12 to 14 25 to 35 50 to 100% N.I.
ASTM 1990 A. punctulata 15 25 to 35 50 to 100% high lighting
NCASI 1991, 1992 Strongylocentrotus,
D. excentricus
7 to 14 N.I. N.I. ambient lab.
USEPA (Pac. 91) S. purpuratus N.I. N.I. N.I. N.I.
USEPA (Pac. 92) S. purpuratus 12 (10 to 14) >30 (32 preferred) N.I. N.I.
Kobayashi 1971   N.I. N.I. N.I. N.I.
Kobayashi 1984   N.I. N.I. N.I. N.I.
S. Calif. Project S. purpuratus 12 N.I. N.I. N.I.
Nacci et al. 1986   N.I. N.I. N.I. N.I.
Cherr et al. 1987   N.I. N.I. N.I. N.I.
BML 1991   N.I. N.I. N.I. N.I.
ERCEES 1990   N.I. N.I. N.I. N.I.
MECAS 1990   12 N.I. N.I. N.I.
NWAS 1990 S. purpuratus,
D. excentricus
10 ± 2 ≥25 N.I. 12 Light
12 Dark
4. Type of Control/Dilution Water
Document Recommended Type of Water and Treatment
Beak 1988 deionized water with sea salts
EVS 1989 clean seawater filtered at 1 µm, UV sterilization optional
B.C. MOE 1990 seawater
IGATG 1991 deionized water with sea salts, or seawater filtered at 0.45 µm
Dinnel et al. 1987 seawater, filtered at 5 µm, activated carbon optional, or recirc’n with filter
USEPA 1988 deionized water plus sea salts or brine; seawater may be additional control
ASTM 1990 reconstituted from sea salts or formula, filtered 0.45 µm, TOC and TSS ≤5 mg/L, UV sterilization if pathogens likely, must achieve 70% fertilization with sperm held in water for 1 h
NCASI 1991, 1992 seawater, filtered 1 µm and UV sterilization, aerated, held 0 h
USEPA (Pac. 91) seawater, filtered 1 µm
USEPA (Pac. 92) seawater, or reconstituted, preferably from brine
Kobayashi 1971 N.I., presumed seawater
Kobayashi 1984 N.I., presumed seawater
S. Calif. Project N.I.
Nacci et al. 1986 brine prepared from seawater, diluted to salinity 30 g/kg with distilled water
Cherr et al. 1987 seawater, filtered 0.45 µm
BML 1991 seawater, filtered and UV sterilized
ERCEES 1990 seawater, supply renewed weekly, filtered 20 µm and 5 µm
MECAS 1990 seawater, filtered 0.45 µm
NWAS 1990 seawater, unfiltered, adjusted to 32 g/kg salinity with deionized water
5. Temperature and Salinity During Test
Document Temperature (°C) Salinity (g/kg) and Method of Adjustment
Beak 1988 20 ± 1 30 ± 2
EVS 1989 15 adjust to unspecified salinity with salts if testing seawater samples, no adjustment for freshwater samples
B.C. MOE 1990 10 N.I.
IGATG 1991 20 ± 1 30 ± 2
Dinnel et al. 1987 s.u. 8 to 10
s.d. 12 to 16
30 ± 3, adjust with sea salt or deionized water
USEPA 1988 20 ± 1 30 ± 2, adjust effluent as necessary
ASTM 1990 12, but 20 for A. punctulata, and ≤2 °C variation between, within vessels >25 and <32, within 1 g/kg of control, 30 recommended; adjust with the brine or salts
NCASI 1991, 1992 12 30, adjust test solutions with brine or salts
USEPA (Pac. 91) 12 32 ± 1
USEPA (Pac. 92) 12 ± 1 32 ± 2, adjust sample to 32
Kobayashi 1971 N.I. N.I., adjust low-salinity samples with brine or by boiling
Kobayashi 1984 N.I. N.I.
S. Calif. Project N.I. N.I., apparently not adjusted. Some tests 31 to 32.6
Nacci et al. 1986 N.I. N.I.
Cherr et al. 1987 N.I. N.I.
BML 1991 15 32, adjust both sample and water if necessary
ERCEES 1990 “appropriate” N.I., adjusted if necessary with brine or deionized water
MECAS 1990 12 ± 1 30 ± 2, adjust test solutions with brine or spring water
NWAS 12 ± 1 32 ± 2, adjust sample as needed with brine
6. Dissolved Oxygen and Lighting During Test
Document Initial DO (% saturation) and Adjustment Lighting
Beak 1988 N.I. normal lab., nominal 1100 lux
EVS 1989 aerate samples enough to attain acceptable DO N.I.
B.C. MOE 1990 N.I. N.I.
IGATG 1991 N.I. normal lab., nominal 1100 lux
Dinnel et al. 1987 N.I. N.I.
USEPA 1988 N.I. normal lab., 540 to 1080 lux
ASTM 1990 90 to 100% in c/d water N.I.
NCASI 1991, 1992 N.I. normal lab. fluorescent
USEPA (Pac. 91) N.I. N.I.
USEPA (Pac. 92) N.I. normal lab., 540 to 1100 lux
Kobayashi 1971, 1984 N.I. N.I.
S. Calif. Project Not controlled N.I.
Nacci et al. 1986 N.I. N.I.
Cherr et al. 1987 N.I. N.I.
BML 1991 N.I. N.I
ERCEES 1990 N.I. N.I.
MECAS 1990 N.I. N.I.
NWAS 1990 N.I. normal lab., no photoperiod required
7. Hydrogen-ion Concentration at Start of Test
Document pH, for Test Water Unless Otherwise Specified, and Adjustments
Beak 1988 N.I.
EVS 1989 adjust sample to pH 7.5 if necessary; pH of test water N.I.
B.C. MOE 1990 N.I.
IGATG 1991 N.I.
Dinnel et al. 1987 adjusted if required; levels not indicated
USEPA 1988 N.I.
ASTM 1990 7.8 to 8.1 for Pacific purple s.u., “similar” for other species; adjust c/d water
NCASI 1991, 1992 N.I.
USEPA (Pac. 91) 8.1 ± 0.1 for c/d water
USEPA (Pac. 92) N.I.
Kobayashi 1971, 1984 N.I.
S. Calif. Project Not controlled. Some tests averaged 7.8 to 7.9
Nacci et al. 1986 N.I.
Cherr et al. 1987 N.I.
BML 1991 8.0, adjust both sample and c/d water if necessary, ensure pH is stable
ERCEES 1990 N.I.
MECAS 1990 8.0 ± 0.2, adjust test solutions as necessary
NWAS 1990 8.0
8. Volume of Test Water, Vessels Used, and Number of Replicates
Document Volume (mL) Vessel Replicates
Beak 1988 5 20-mL scintillation vials, disposable four
EVS 1989 10 test tubes, 16 × 150 mm with caps three
B.C. MOE 1990 2 borosilicate glass tubes, disposable three
IGATG 1991 5 20-mL scintillation vials, disposable three
Dinnel et al. 1987 10 borosilicate glass test tubes, 16 × 100 mm, disposable, unwashed ≥3
USEPA 1988 5 20-mL scintillation vials, disposable ≥3, normally four
ASTM 1990 N.I. glass vials, 15 to 22 mL, or other recommend 4, usually ≥3
NCASI 1991, 1992 2 borosilicate glass culture tubes, 13 × 100 mm disposable four
USEPA (Pac. 91) 5 borosilicate glass tubes, 16 × 100 mm three
USEPA (Pac. 92) 5 disposable glass test tubes, 16 × 100/125 mm ≥3
Kobayashi 1971 N.I. glass finger bowl, 5 cm diam., 3 cm deep N.I.
Kobayashi 1984 N.I. finger bowl filled with test medium N.I.
S. Calif. Project 50 (sperm) polypropylene cup N.I.
S. Calif. Project 900 eggs 1-L beaker N.I.
Nacci et al. 1986 10 glass vials N.I.
Cherr et al. 1987 2 borosilicate culture tubes, 13 × 100 mm N.I.
BML 1991 2 N.I. three
ERCEES 1990 10 20-mL scintillation vials four
MECAS 1990 5 25-mL scintillation vials ≥3
NWAS 1990 10 borosilicate culture tubes, 18 × 150 mm four
9. Exposure Times for Sperm, for Eggs Plus Sperm, and for Experimental Controls
Document Sperm exposure Eggs + Sperm Control Vessels
Beak 1988 60 min 60 min 4 c/d water
EVS 1989 30 min (s.u.)
60 min (s.d.)
20 min
20 min
3 with c/d; freshwater samples with duplicate salinity controls made with distilled water, concentrations same as for the sample
B.C. MOE 1990 10 min 10 min 3 seawater
IGATG 1991 60 min 20 min 3 c/d water
Dinnel et al. 1987 60 min 20 min ≥3 c/d water
USEPA 1988 60 min 20 min ≥3, normally 4, c/d water
ASTM 1990 60 min 20 min c/d water; solvent control if used
NCASI 1991, 1992 10 min 10 min 4 c/d water
USEPA (Pac. 91) 20, 60 min 20, 60 min diverse, to assess alternate methods in this exploratory round-robin
USEPA (Pac. 92) 60 min 20 min ≥3 c/d water; unfertilized eggs in c/d water and high concentration; optional seawater and receiving water controls; salinity controls if samples <30 or >34 g/kg
Kobayashi 1971 none, sperm and eggs together in 3-min fertilization exposure yes, assumed in c/d water
Kobayashi 1984 N.I., assume sperm and eggs together in 3-min fertilization exposure, or option with “aged” gametes pre-exposes sperm to test water for 5 min, pre-exposes eggs for several hours N.I.
S. Calif. Project 15 min eggs pre-exposed 30 min, then with sperm 4 seawater, plus salinity controls to match effluent concentrations
Nacci et al. 1986 60 min 20 min N.I.
Cherr et al. 1987 10 min 10 min yes, details unspecified
BML 1991 10 min 10 min N.I., assumed c/d water
ERCEES 1990 60 min 20 min N.I., 4 assumed in c/d water
MECAS 1990 N.I. N.I. ≥3 seawater
NWAS 1990 60 min 20 4 c/d water
10. Stimulation of Spawning and Collecting Gametes
Document Stimulus Used Collecting
Beak 1988 0.5 mL of 0.5M KCl 5 mm seawater in petri dishes
EVS 1989 0.5 mL of 0.5M KCl (2nd injection if needed) c/d water in 150-mL beaker
B.C. MOE 1990 s.u., 1.0 mL of 0.5M KCl
s.d., 0.5 mL of 0.5M KCl
as above
seawater at 10 °C in 250 mL beaker
IGATG 1991 0.5 mL of 0.5M KCl 5 mm seawater in petri dishes
Dinnel et al. 1987 s.u. 1.0 mL of 0.5M KCl
s.d. 0.5 mL
seawater in 100-mL beaker
USEPA 1988 12 volts D.C. for 30 sec bowl, shallow c/d water, use syringe
ASTM 1990 most species, 0.5 to 1.0 mL of 0.5M KCl, 2nd injection if no spawn in 10 min; use 12 volts D.C. for Arbacia seawater in small beaker
NCASI 1991, 1992 s.u. 1.0 mL
s.d. 0.5 mL of 0.5M KCl
collect with pipet to tubes at12°C c/d water in 50-mL beaker (s.u. 100-mL beaker)
USEPA (Pac. 91) 0.5 to 1.0 mL of 0.5M KCl, 2nd injection if needed c/d water in 100-mL beaker
USEPA (Pac. 92) 0.5 mL of 0.5M KCl, 2nd injection if needed eggs in c/d water in 100-mL beaker, semen “dry”
Kobayashi 1971 KCl injection for ♀ testes removed, “dry” sperm to seawater
Kobayashi 1984 “KCl method” N.I.
S. Calif. Project 0.5 mL of 0.5M KC1 eggs into seawater in 100-mL beaker, semen “dry” with pipet to tubes at, <5 °C
Nacci et al. 1986 electrical N.I.
moistened (♂), collect with pipet to vials on ice
Cherr et al. 1987 0.5 mL of 0.5M KCl seawater in 50-mL beaker
BML 1991 0.5 to 1.0 mL of 0.5M KCl shake and place on fingerbowl with seawater (♀)
ERCEES 1990 0.5 mL of 0.5M KCl in small beaker, “dry” for sperm, water for eggs
MECAS 1990 0.5 mL of 0.5M KCl, 2nd inject’n in 5 min if needed eggs into 100-mL beaker with 20 mL water, sperm “dry” with syringe to vial on ice
NWAS 1990 s.u. 1.0 mL of 0.5M KCl, s.d. 0.5 mL on empty 100-mL beaker, collect eggs to cold c/d water, semen “dry” with pipet to cooled test tube
11. Holding Gametes
Document Conditions and Limitations for Holding
Beak 1988 sperm composited from several males
EVS 1989 s.u. sperm on ice, wash eggs 3 times, pool gametes from ♂, ♀
B.C. MOE 1990 sperm composited from ≥2 males, used ≤4 h, eggs stored ≤24 h
IGATG 1991 composite sperm, hold on ice, use ≤20 min, eggs from 4 animals
Dinnel et al. 1987 sperm activation for ≤1.5 h did not affect test, wash eggs 3 times, compositing optional
USEPA 1988 sperm used in <1 h, kept on ice, eggs keep several hours at lab. temperature
ASTM 1990 sperm in cool seawater keep several hours, keep “dry” and refrigerated for many hours, rinse eggs 2 or 3 times, keep sperm separate and use block design for test or composite
NCASI 1991, 1992 sperm usually ≤1 h, eggs normally ≤2 h, hold at 12 °C
USEPA (Pac. 91) collect for ≤30 min, wash eggs twice, composite sperm
USEPA (Pac. 92) collect for ≤30 min, wash eggs twice, store in water at standard strength, sperm in separate vials on ice and use in ≤4 h
Kobayashi 1971 use ≤1 h
Kobayashi 1984 use gametes ≤1 h, wash eggs several times
S. Calif. Project “dry” semen stored at <5 °C, pool eggs from 6 ♀, wash twice
Nacci et al. 1986 N.I.
Cherr et al. 1987 gametes on ice for ≤2 h
BML 1991 eggs and “dry” sperm to vials on ice, wash eggs twice
ERCEES 1990 pool sperm, eggs
MECAS 1990 “dry” sperm to vial on ice, wash eggs twice, hold in dark at 12 °C
NWAS 1990 “dry” semen to refrigerated tube, wash eggs twice and use fresh
12. Numbers of Gametes Used Per Test Vessel and Sperm-to-egg Ratios
Document Sperm/Vessel Eggs/Vessel Sperm:Egg Ratio
Beak 1988 7 or 5 million? 2000 2500 or 3500:1?
EVS 1989 s.u. 4 million 2000 2000:1
EVS 1989 s.d. 2.4 million 2000 1200:1
B.C. MOE 1990 N.I. 500 N.I.
IGATG 1991 ~5 million 2000 ~2500:1
Dinnel et al. 1987 various 2000 determine appropriate ratio, commonly purple s.u. 200:1, red s.u. 1000:1, green s.u. 2000, s.d. (D. excentricus) 1200:1
USEPA 1988 5 million 2000 2500:1
ASTM 1990 empirical to give 70% to 90% fertilization 200/mL of test solution commonly 200:1 for purple s.u. s.d. 1200:1, others 2000 to 2500:1
NCASI 1991, 1992 s.d. 20 000 to 60 000
s.u. empirical
500
500
40:1 to 120:1 determine appropriate ratio
USEPA (Pac. 91) various 1120? various, to assess methods
USEPA (Pac. 92) 560 000 1120 500:1 (fixed ratio)
Kobayashi 1971 N.I. N.I. N.I.
Kobayashi 1984 N.I. N.I. N.I.
S. Calif. Project N.I. (1.2 mL of standard preparation) 31 500 N.I.
Nacci et al. 1986 0.1 million 1000 100:1 (authors say 1000:1)
Cherr et al. 1987 0.5 million 500 1000:1
BML 1991 N.I. (0.1 mL “dry”) N.I. (0.1 mL) 1000:1
ERCEES 1990 empirical 2000 determine appropriate ratio
MECAS 1990 1 million? empirical determine ratio needed for 70% to 90% fertilization
NWAS 1990 empirical 2000 determine ratio needed for 70% to 90% fertilization, commonly ratios from 200:1 to 2000:1
13. Adjustment of Results for Degree of Fertilization in Controls Table note a.1
Document Method of Adjustment
Beak 1988 Abbott’s formula
EVS 1989 Abbott’s formula
B.C. MOE 1990 Abbott’s formula
IGATG 1991 Abbott’s formula:Table note b A = (O - C) × (100) / (100 - C)
Dinnel et al. 1987 Abbott’s formula
USEPA 1988 Abbott’s formula
ASTM 1990 “Adjusted percent Fertilization” = AF = 100 × OF/CFTable note b [symbols changed, this gives same result as Abbott’s formula, but is calculated for fertilization]
NCASI 1991, 1992 N.I.
USEPA (Pac. 91) N.I.
USEPA (Pac. 92) as in USEPA (1988)
Kobayashi 1971 N.I.
Kobayashi 1984 N.I.
S. Calif. Project IC50 not mentioned as a statistic to be estimated
Nacci et al. 1986 N.I.
Cherr et al. 1987 “normalized” for control fertilizations, method not stated
BML 1991 N.I.
ERCEES 1990 N.I.
MECAS 1990 N.I.
NWAS 1990 Abbott’s formula
14. Requirements for Valid Test
Document Percent Fertilization in Control Other Requirements
Beak 1988 N.I.  
EVS 1989 N.I.  
B.C. MOE 1990 N.I.  
IGATG 1991 N.I.  
Dinnel et al.1987 ≥50  
USEPA 1988 ≥70 (>90 might mask toxicity)  
ASTM 1990 ≥50, desirable 70 to 90, best 80 to 95  
NCASI 1991, 1992 50 to 100 acceptable, 50 to 90 preferred  
USEPA (Pac. 91) desirable to attain 80 to 95  
USEPA (Pac. 92) fertilization ≥50 in control; sperm concentration within a factor of two if desired; essentially zero fertilization in egg controls in c/d water and effluent  
Kobayashi 1971 N.I.  
Kobayashi 1984 pre-test check ≥85) (“aged gametes” ≥91) membrane to elevate within 3 min of fertilization
S. Calif. Project N.I.  
Nacci et al. 1986 ≥60m; ≤90  
Cherr et al. 1987 N.I.  
BML 1991 N.I.  
ERCEES 1990 ≥70, ≤90 positive and logical dose-effect curve; physical and chemical requirements met
MECAS 1990 N.I.  
NWAS 1990 ≥70, ≤90  
15. Reference Toxicant
Document Chemical Required? Test Type or EndpointTable note a.2
Beak 1988 N.I.    
EVS 1989 sodium dodecyl sulphate yes in duplicate, 5 concentrations 1.0 to 10 mg/L
B.C. MOE 1990 N.I.    
IGATG 1991 cadmium chloride no  
Dinnel et al. 1987 silver no  
USEPA 1988 copper sulphate yes with each batch of gametes
ASTM 1990 N.I. no “might assess sensitivity of a spawning”
NCASI 1991, 1992 N.I.    
USEPA (Pac. 91) copper no?  
USEPA (Pac. 92) copper, sodium dodecyl sulphate, or other yes with each set of tests
Kobayashi 1971 N.I.    
Kobayashi 1984 N.I.    
S. Calif. Project N.I.    
Nacci et al. 1986 N.I.    
Cherr et al. 1987 sodium azide no  
BML 1991 N.I.    
ERCEES 1990 N.I.    
MECAS 1990 N.I.    
NWAS 1990 sodium azide yes concurrent with main test

Appendix E: Bibliography. Additional Papers Directly Relevant to Canadian Echinoid Fertilization Assay

This list could assist laboratories wishing to enter the wider literature on echinoid testing. Many of these publications contain data on toxic concentrations of various pollutants to echinoid gametes, or compare findings for other stages of development or other organisms. Some annotations have been added in square brackets.

Adams, J.A., “Effect of PCB (Aroclor 1254) on Early Development and Mortality in Arbacia Eggs”, Water Air Soil Pollut., 20(1):1-6 (1983).

Allen, H., “Effects of Petroleum Fractions on the Early Development of a Sea Urchin”, Mar. Pollut. Bull., 2:138-140 [Embryo development more sensitive than fertilization] (1971).

ASTM, “Proposed Standard EXXX for Conducting Static Acute Toxicity Tests with Echinoid Embryos”, Draft no. 1. ASTM Subcommittee of E-47.01 on Aquatic Toxicology. Amer. Soc. Testing and Materials, Philadelphia, PA, 42 p. [Chair: Dr. P.A. Dinnel, Fisheries Res. Inst., Univ. Washington, Seattle, Washington.] [Test uses 48 to 96-h embryo development]. (1991).

ASZ, “Developmental Biology of the Echinoderms. A Symposium”, Amer. Zool., 15 (3):485-775 (1975).

Bay, S.M., P.S. Oshida, and K.D. Jenkins, “A Simple New Bioassay Based on Echinochrome Synthesis by Larval Sea Urchins”, Mar. Environ. Res., 8:29-39 (1982).

Bougis, P., “Effet du cuivre sur la croissance du plutéus d’Oursin (Paracentrotus lividus), C.R. Acad. Sci.Paris, 260: 2929-2931 [Growth of embryos] (1965).

Bougis, P., M.C. Corre, and M. Étienne, “Sea Urchin Larvae as a Tool for Assessment of the Quality of Sea-water”, Ann. Inst. Oceanogr. (Paris), 55:21-26 (1979).

Bresch, H., R. Speilhoff, V. Mohr, and H. Barkemeyer, “Use of Sea Urchin Egg for Quick Screen Testing of the Biological Activity of Substances. I. Influence of Fractions of a Tobacco Smoke Condensate on Early Development”, Proc. Soc. Exp. Biol. Med., 141:747-752 (1972).

Canevari, G.P. and G.P. Lindblom, “Some Dissenting Remarks on Deleterious Effects of Corexit 9527 on Fertilization and Development,” Mar. Pollut. Bull., 7 (7): 127-128 [Follows paper by Lonning and Hagström, 1976, and offers criticism](1976).

Carr, R.S. and M. Nipper (eds.), Porewater Toxicity Testing: Biological, Chemical and Ecological Considerations, Proceedings from the Workshop on Sediment Porewater Toxicity Testing: Biological, Chemical, and Ecological Considerations, Society of Environmental Toxicology and Chemistry Press, Pensacola, FL, 315 p. (2003).

Castagna, A., F. Sinatra, M. Scalia, and V. Capodicasa, “Observations of the Effect of Zinc on the Gametes and Various Development Phases of Arbacia lixula”, Mar. Biol., 64:285-289 [Reduced Sperm Motility in 96 h] (1981).

Ceas, M.P., “Effects of 3,4-Benzopyrene on Sea Urchin Egg Development”, Acta Embryol Exp., 3: 267-272 (1974).

de Angelis, E. and G.G. Giordano, “Sea Urchin Egg Development Under the Action of Benzo-a-pyrene and 7-12-Dimethylbenz-a-anthranacene”, Cancer Res., 34:1275-1280 (1974).

den Besten, P.J., H.J. Herwig, D.I. Zandee, and P.A. Voogt, “Effects of Cadmium and PCBs on Reproduction of the Sea Star Asterias rubens: Aberrations in the Early Development”, Ecotoxicol. Environ. Safety, 18:173-180 (1989).

Dinnel, P.A., “Adaption of the Sperm/Fertilization Bioassay Protocol to Hawaiian Sea Urchin Species”, Final Rept. to State of Hawaii Dept. of Health, Marine Biological Consultants of Washington, Rept No. MBCW-8801, 38 p. (1988).

------. “Annotated Bibliography of Bioassays Related to Sediment Toxicity Testing in Washington State”, Final Rept to U.S. Army Corps of Engineers, Seattle, WA, Univ. Washington, School Fisheries, Rept No. FRI-UW-9017 (1990).

Dinnel, P.A. and R.M. Kocan, “Puget Sound Estuary Program Sediment Bioassay Comparison Test: Results of the Sand Dollar (Dendraster excentricus) Embryo Bioassays”, Final Rept. for Battelle Laboratories and U.S. Environmental Protection Agency, Seattle, Washington, Marine Biological Consultants of Washington, Rept. No. MBCW-8802, 18 p. (1988).

Dinnel, P.A., S.C. Crumley, and Q.J. Stober, “Sand dollar (Dendraster excentricus) Sperm and Embryo Bioassay of Puget Sound Receiving Water Samples”, Final Rept. for Washington State Shellfish Lab., Brinnon, Washington Univ. Washington, School Fisheries, Rept No. FRI-UW-7912. 19 p. [Parallel tests on sand dollar sperm and embryo, and oyster larvae, at two labs] (1979).

Dinnel, P.A., Q.J. Stober, and D.H. DiJulio, “Sea Urchin Sperm Bioassay for Sewage and Chlorinated Seawater and its Relation to Fish Bioassays”, Mar. Environ. Res., 5: 29-39 (1981).

Dinnel, P.A., Q.J. Stober, J.M .Link, M.W. Letourneau, W.E. Roberts, S.P. Felton, and R.E. Nakatani, “Methodology and Validation of a Sperm Cell Toxicity Test for Testing Toxic Substances in Marine Waters”, Univ. of Washington, School Fisheries, Rept. No. FRI-UW-8306, 198 p. (1983).

Drouin, G., J.H. Himmelman, and P. Béland, “Impact of Tidal Salinity Fluctuations on Echinoderm and Mollusc Populations”, Can. J. Zool., 63:1377-1387 (1985).

Ebert T.E., “Growth and Mortality of Post-larval Echinoids”, Amer. Zool., 15 (3):755-775 [Part of Symposium] (1975).

Epel, D., “The Program of and Mechanisms of Fertilization in the Echinoderm Egg”, Mer. Zool. 15:507-522 (1975).

EVS, “An Evaluation of the Sensitivity of Microassays Relative to Trout and Daphnid Acute Lethality Tests”, EVS Consultants, North Vancouver, B.C., report for Environment Canada, River Road Environ. Technol. Centre, 76 p. Ottawa, Ontario. [Brief comments on sperm test relative to other rapid ones] (1989).

Ferrari, L., R.J. Lombardo, P. del Giorgio, M.C. Tortorelli, and D.A. Hernandez, “Effects of Formulated Ethyl Parathion on Fertilization of the Sea Urchin Pseudechinus magellanicus (Phillippi)”, Bull. Environ. Contam. Toxicol., 42:367-374 (1989).

Guidice, G., “The Sea Urchin Embryo. A Developmental Biological System”, Springer-Verlag, Berlin, 246 p. (1986).

Hagström, B.E. and S. Lönning, “The Sea Urchin Egg as a Testing Object in Toxicology”, Acta Pharmacol. Toxicol., 32:(Supp.1):1-49 (1973).

------. “Deleterious Effects of Corexit 9527 on Fertilization and Development”, Mar. Pollut. Bull., 8:136-138 (1977).

Hernández, D.A., R.J. Lombardo, L. Ferrari, and M.C. Tortorelli, “Toxicity of Ethyl-parathion and Carbaryl on Early Development of Sea Urchin”, Bull. Environ. Contam. Toxicol., 45:734-741 (1990).

Heslinga, G.A., “Effects of Copper on the Coral-reef Echinoid Echinometra mathaei”, Mar. Biol., 35:155-160 [Exposed gametes, embryos and adults] (1976).

Himmelman, J.H. “Reproductive Cycle of Strongylocentrotus droebachiensis”, Can. J. Zool., 56:1828-1836 (1978).

Himmelman, J.H., Y. Lavergne, F. Axelsen, A. Cardinal, and E. Bourget, “Sea Urchins in the Saint Lawrence Estuary: Their Abundance, Size, Structure and Suitability for Commercial Exploitation”, Can. J. Fish Aquat. Sci., 40:474-486 (1983).

Hinegardner, R.T., “Morphology and Genetics of Sea Urchin Development”, Amer.Zool., 15(3):679-690 (1975).

Hinegardner, R.T. and M.M.R. Tuzzi, “Laboratory Culture of the Sea Urchin Lytechinus pictus”, p. 291-308, in: NRC, 1981. Laboratory Animal Management. Marine Invertebrates. U.S. National Research Council, Inst. Lab. Animal Resources, Committee on Marine Invertebrates, National Academy Press, Washington, D.C. (1981).

Hose, J.E. “Potential Uses of Sea Urchin Embryos for Identifying Toxic Chemicals: Description of a Bioassay Incorporating Cytologic, Cytogenetic and Embryologic Endpoints”, J. Appl. Toxicol., 5:245-254 [48-h development assay] (1985).

Hose, J.E. and H.W. Puffer, “Cytologic and Cytogenetic Anomalies Induced in Purple Sea Urchin Embryos (Strongylocentrotus purpuratus S.) By Parental Exposure to Benzo (a) pyrene”, Mar. Biol Lett., 4: 87-95 (1983).

Hose, J.E., H.W. Puffer, P.S. Oshida, and S.M. Bay, “Development and Cytogenetic Abnormalities Induced in the Purple Sea Urchin by Environmental Levels of Benzo(a) pyrene”, Arch. Environ. Contam. Toxicol., 12:319-325 (1983).

Jackim, E. and D. Nacci, “A Rapid Aquatic Toxicity Assay Utilizing Labeled Thymidine Incorporation in Sea Urchin Embryos”, Environ. Toxicol. Chem., 3:631-636 (1984).

------. “Improved Sea DNA-based Embryo Growth Toxicity Test”, Environ. Toxicol. Chem., 5:561-565 (1986).

Kinae, N., T. Hashizume, T. Makita, I. Tomita, and I. Kimura, “Kraft Pulp Mill Effluent and Sediment Can Retard Development and Lyse Sea Urchin Eggs”, Bull. Environ. Contam. Toxicol., 27:616-623 (1981).

Kobayashi, N., “Bioassay Data for Marine Pollution Bioassay Using Sea Urchin Eggs”, Publ. Seto Mar. Biol. Lab., 19 4(6): 439-444 [3-min Fertilization Success and 12- to 36-h larval development] (1972).

------. “Studies on the Effects of Some Agents on Fertilized Sea Urchin Eggs, as a Part of the Bases for Marine Pollution Bioassay”, I. Publ. Seto Mar. Biol. Lab., 21(2): 109-114 (1973).

------. “Marine Pollution Bioassay by Sea Urchin Eggs, an Attempt to Enhance Accuracy”, Publ. Seto Mar. Biol. Lab., 21(5/6): 377-391 (1974).

------. “Bioassay Data for Marine Pollution Using Sea Urchin Eggs, 1975", Publ. Seto Mar. Biol. Lab., 23(6): 427-433 (1977).

------. “Preliminary Experiments with Sea Urchin Pluteus and Metamorphosis in Marine pollution Bioassay”, Publ. Seto Mar. Bio. Lab., 24(1/3): 9-21 [Sand dollar more sensitive than sea urchin, Pluteus stage most sensitive] (1977).

------. “Comparative Toxicity of Various Chemicals, Oil Extracts and Oil Dispersant Extracts to Canadian and Japanese Sea Urchin Eggs”, Publ. Seto Mar. Biol. Lab., 26(1/3): 123-133 (1981).

------. Marine Pollution Bioassay by Sea Urchin Eggs, An Attempt to Enhance Accuracy, II”, Publ. Seto Mar. Biol. Lab., 30(4/6): 213-226 [Compared various combinations of pre-treated eggs and/or sperm, with interesting results] (1985).

------. “Marine Pollution Bioassay by Sea Urchin Eggs, an Attempt to Enhance Sensitivity,” Publ. Seto Mar. Biol. Lab., 34 (4-6): 225-237 (1990).

Kobayashi, N.H. Nogami, and K. Doi, “Marine Pollution Bioassay by Using Sea Urchin Eggs in the Inland Sea of Japan (the Seto-Naikai)”, Publ. Seto Mar. Biol. Lab., 19(6):359-381 (1972).

Lee, H.H. and C.H. Xu, “Effects of Metals on Sea Urchin Development: A Rapid Bioassay”, Mar. Pollut. Bull., 15:18-21 (1984).

Long, E.R. and M.F. Buchman, “An Evaluation of the Performance of Five Types of Sediment Toxicity Tests”, p. 603-607, in: Oceans ‘89, An International Conference Addressing Methods for Understanding the Global Ocean. Vo. 2, Ocean Pollution. Sept 18-21, 1989, Seattle, Washington, Marine Technol. Soc., Washington, D.C. and Inst. Electrical Electronic Engineers Piscataway, N.J. [Compares Strongylocentrotus purpuratusresults with other marine species] (1989).

Long, E. R. and M.F. Buchman, “An Evaluation of Candidate Measures of Biological Effects for the National Status and Trends Program”, U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Seattle, Washington, NOAA Tech. Mem. NOS OMA 45 (1989).

Lönning, S., “The Sea Urchin Egg as a Test Object in Oil Pollution Studies”, Rapp. P.-v Reunion Cons. Int. Explor. Mer., 171: 186-188 (1977).

Lönning, S. and B.E. Hagström, “The Effects of Crude Oils and the Dispersant Corexit 8666 on Sea Urchin Gametes and Embryos”, Norw. J. Zool., 23: 121-129 (1975).

------. “Deleterious Effects of Corexit 9527 on Fertilization and Development”, Mar. Pollut. Bull., 7 (7): 124-127 [See Canevari and Lindblom, 1976] (1976).

Nacci, D. and E. Jackim, “Rapid Aquatic Toxicity Assay Using Incorporation of Tritiated-thymidine Into Sea Urchin, Arbacia punctulata Embryo: Evaluation of Toxicant Exposure Procedures”, p. 382-394 in: Aquatic Toxicology and Hazard Assessment: Eighth Symposium”, R.C. Bahneer and D. J. Hansen (eds.), Amer. Soc. Testing and Materials, Philadelphia, PA, ASTM STP No. 891 (1985).

Nacci, D.E., R. Walsh, and E. Jackim, “Guidance Manual for Conducting Sperm Cell Tests with the Sea Urchin, Arbacia punctulata, for Use in Testing Complex Effluents”, U.S. Environmental Protection Agency, Environ. Res. Lab., Narragansett, R.I. Contribution No. X105, 34 p. (1985).

Nicol, J.A.C., W.H. Donahue, R.T. Wang, and K. Winters, “Chemical Composition and Effects of Water Extracts of Petroleum on Eggs of the Sand Dollar Melitta quinquiesperforata”, Mar. Biol., 40:309-316 (1977).

Oshida, P.S. and T.K. Goochey, “A New Test for Measuring Seawater Toxicity”, South Calif. Coastal Water Res. Project Biennial Rept, p. 149-159 (1980).

Ozretic, B. and M. Krajnovic-Ozretic, “Morphological and Biochemical Evidence of the Toxic Effect of Pentachlorophenol on the Developing Embryos of the Sea Urchin”, Aquat. Toxicol., 7: 255-263 (1985).

Pagano, G., M. Cipollaro, G. Corsale, A. Esposito, G.G. Giordano, E. Ragucci, and N.M. Trieff, “Comparative Toxicities of Benzene, Chlorobenzene and Dichlorobenzene to Sea Urchin Embryos and Sperm”, Bull. Environ. Contam. Toxicol., 40:481-488 (1988).

Pagano, G., M. Cipollaro, G. Corsale, A. Esposito, A. Mineo, E. Ragucci, G.G. Giordano, N. Kobayashi, and N.M. Trieff, “Effects of Sodium Azide on Sea Urchin Embryos and Gametes”, Teratogen. Carcinogen. Mutagen. 8:363-376 (1988).

Pagano, G., M. Cipollaro, G. Corsale, A. Esposito, E. Ragucci, G. G. Giordano, and N.M. Trieff, “Comparative Toxicities of Chlorinated Biphenyls on Sea Urchin Egg Fertilisation and Embryogenesis”, Mar. Environ. Res., 17:240-244 (1985).

Pagano, G., G. Corsale, A. Esposito, P.A. Dinnel, and L.A. Romana, “Use of Sea Urchin Sperm and Embryo Bioassay Testing the Sublethal Toxicity of Realistic Pollutant Levels”, p. 153-163, in: Carcinogenic, Mutagenic, and Teratogenic Marine Pollutants; Impact on Human Health and the environment. [Pub.on behalf of World Health Organiz. Regional Office Europe and United Nations Environ. Progr.] Gulf Publ. Co., Houston, Texas, Advances in Applied Biotechnology Series, Vol. 5, [No details of methods] (1989).

Pagano, G., Esposito, P. P. Bove, M. de Angelis, A. Rota, E. Vamvakinos, and G.G. Giordano, “Arsenic-induced developmental defects and Mitotic Abnormalities in Sea-urchin Development”, Mutation Res., 104:351-354 [Pre-exposed sperm] (1982).

Pagano, G., A. Esposito, and G.G. Giordano, “Fertilization and Larval Development in Sea Urchins Following Exposure of Gametes and Embryo to Cadmium.” Arch. Environ. Contam. Toxicol., 11:47-55 (1982).

Pagano, G., A. Esposito, G.G. Giordano, and B.E. Hagström, “Embryotoxic and Teratogenic Effects of Styrene Derivatives on Sea Urchin Development”, Scand. J. Work Environ. & Health, 4 (Suppl. 2): 136-141 (1978).

Pagano, G., A. Esposito, G.G. Giordano, E. Vamvakinos, I. Quinto, G. Bronzetti, C. Bauer, C. Corsi, R. Nieri, and A. Ciajolo, “Genotoxicity and Teratogenicity of Diphenyl and Diphenyl Ether: A Study of Sea Urchins, Yeast, and Salmonella typhimurium, Teratogen. Carcinogen. Mutagen. 3: 377-393 (1983).

Pastorok, R.A. and D.S. Becker, “Comparative Sensitivity of Bioassays for Assessing Sediment Toxicity in Puget Sound”, p. 431-436, in: Oceans ‘89, An International Conference Addressing Methods for Understanding the Global Ocean. Vo. 2, Ocean pollution. Sept 18-21, 1989, Seattle, Washington. Marine Technol. Soc., Washington, D.C. and Inst. Electrical Electronic Engineers Piscataway, N.J. (1989).

------. “Comparative Sensitivity of Sediment Toxicity Bioassays at Three Superfund Sites in Puget Sound”, p. 123-139, in: Aquatic Toxicology and Risk Assessment: thirteenth volume, W.G. Landis and W.H. van der Schalie (eds.), Amer. Soc. Testing and Materials, Philadelphia, PA, ASTM STP No. 1096 [Dendraster] (1990).

Pavillon, J.F., “Sea Urchin Eggs and Larvae: Excellent Biological Indicators”, p. 821-825, in: Echinoderm Biology, Proc. Sixth Internat. Echinoderm Conf., Aug. 23-28, 1987, Victoria. R. D. Burke , P.V. Mladenov, P. Lambert and R.L. Parsley (eds), A.A. Balkema, Rotterdam [Useful explanation and analysis of embryo-larval test] (1988).

Pearce, J.S., D.J. Eernisse, V.B. Pearse, and K.A. Beauchamp, “Photoperiodic Regulation of Gametogenesis in Sea Stars, with Evidence for an Annual Calendar Independent of Fixed Daylength”, Amer. Zool., 26: 417-431 [Technique for maturing urchins out of season] (1986).

Pearse, V.B. and K.K. Davis, “Photoperiodic Regulation of Gametogenesis and Growth in the Sea Urchin Strongylocentrotus purpuratus”, J. Exp. Zool., 27:107-118 [Technique for maturing urchins out of season] (1986).

Percy, J.A. , “Thermal Adaption in the Boreo-arctic Echinoid, Strongylocentrotus droebachiensis (O.F. Müller, 1776). I. Seasonal Acclimatization of Respiration. II. Seasonal Acclimatization and Urchin Activity. IV. Acclimation in the Laboratory”, Physiol. Zoo., 45: 277-289; 46:129-138; 47: 163-171 (1972; 1973; 1974).

Puget Sound Estuary Program, “Recommended Protocols for Conducting Laboratory Bioassays on Puget Sound Sediments”, Final draft Rept for U.S. Environmental Protection Agency, Seattle, Washington, 24 p. [Test of development to pluteus stage] (1991).

Raymond, B.G. “Behaviour and Growth of the Early Life History Stages of Strongylocentrotus droebachiensis”, M.Sc. thesis, Dalhousie Univ., Dept Biol. (1985).

Roller, R.A. and W.B. Stickle, “Effects of Salinity on Larval Tolerance and Early Developmental Rates of Four Species of Echinoderms”, Can. J. Zool., 63: 1531-138 (1985).

Runnström, J. and B. Hagström, “The Effect of Some Oxidizing Agents Upon Fertilization and Ensuing Development of the Sea Urchin Egg”, Exper. Cell Res., 7: 327-344 (1955).

Schilling, F.M. and D.T. Manahan, “Energetics of Early Development for the Sea Urchins Strongylocentrotus purpuratus and Lytechinus pictus and the Crustacean Artemia sp.”, Mar. Biol., 106:119-127 (1990).

Stebbing, A.R.D., B. Åkesson, A. Calabrese, J.H. Gentile, and R. Lloyd, “The Role of Bioassays in Marine Pollution Monitoring. Bioassay Panel Report”, Rapp. P.-v Réunion Cons. Int. Explor. Mer.179: 322-332 [Good list and review] (1980).

Strathmann, R.R. “Larval Feeding in Echinoderms”, Amer. Zool., 15(3): 717-730 (1975).

------. “General Procedures”, Chapter 1, p. 3-43, in: Reproduction and Development of Marine Invertebrates of the Northern Pacific Coast. Data and Methods for the Study of Eggs, Embryos, and Larvae,” M.F. Strathmann, (ed.), Univ. of Washington Press, Seattle (1987).

Timourian, H., “The Effect of Zinc on Sea-Urchin Morphogenesis”, J. Exp. Zool., 169: 121-131 (1968).

Timourian, H., C.E. Hubert, and R.N. Stuart, “Fertilization in the Sea-urchin as a Function of Sperm-to-Egg Ratio”, J. Reprod. Fert., 29: 381-385 (1972).

Trieff, N.M., M. Cipollaro, G. Corsale, A. Esposito, E. Ragucci, G.G. Giordano, S.V.N. Ramanujam, D.R. Livingstone, and G. Pagano, “Aroclor 1254 Toxicity in Sea Urchin Embryos and Gametes”, Exp. Oncol., 7: 57-64 (1988).

Vaschenko, M.A., “Effects of Oil Pollution on the Development of Sex Cells in Sea Urchins”, Helgoländer Meeresunters, 33: 297-330 (1980).

------. “The Effect of Water Soluble Hydrocarbon Fraction of Diesel Fuel on the Development of Gametes and Quality of Offspring of the Sea Urchin Strongylocentrotus nudus”, Soviet J. Mar. Biol. [translation of Biologiya Morya (USSR)] 6:236-242. [Adult exposure, assess embryonic development with/without further exposure] (1980).

Yamaguchi, M. and S. Kinoshita, “Inhibition of the Sulfated Polysaccharide Synthesis in Thiocyanate-treated Embryos of the Sea Urchin, Clypeaster japonicus”, Zool. Sci., 3: 719-721 (1986).

Young, L.G. and I. Nelson, “The Effects of Heavy Metal Ions On the Motility of Sea Urchin Spermatozoa”, Biol. Bull., 147: 236-246 (1974).

Appendix F: Logarithmic Series of Concentrations Suitable for Toxicity TestsFootnote 83

Column (Number of concentrations between 100 and 10, or between 10 and 1) Footnote 84
1 2 3 4 5 6 7
100 100 100 100 100 100 100
32 46 56 63 68 72 75
10 22 32 40 46 52 56
3.2 10 18 25 32 37 42
1.0 4.6 10 16 22 27 32
  2.2 5.6 10 15 19 24
  1.0 3.2 6.3 10 14 18
    1.8 4.0 6.8 10 13
    1.0 2.5 4.6 7.2 10
      1.6 3.2 5.2 7.5
      1.0 2.2 3.7 5.6
        1.5 2.7 4.2
        1.0 1.9 3.2
          1.4 2.4
          1.0 1.8
            1.3
            1.0

Page details

Date modified: